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Abstract

Human language is highly ambiguous and complex. It makes Natural Language Un-

derstanding (NLU) quite challenging. Knowledge about semantic inference relation

between text snippets is useful for several applications. A text ‘T’ is said to entail

a hypothesis ‘H’ if a human reading them can infer ‘H’ from ‘T’.

We have developed a tool which takes (T,H) pairs as input, and returns an entail-

ment decision as output. It is incorporated as a new Entailment Decision Algorithm

(EDA) within the Excitement Open Platform (EOP). The developed EDA follows

an alignment-based approach for Recognizing Textual Entailment (RTE), motivated

by the third-year agenda set by the consortium of the EC-funded open source project

“Excitement”.

Various lexical alignment algorithms have been developed to align fragments of

text and hypothesis. Approximate distance-based algorithms have been explored

for token word, lemma and phrase alignment. Utilizing a distance-based match as

opposed to exact match enables handling of noise in data, for example, spelling

variations and noisy tokenization. Embedded word-vector based phrase alignment

algorithms have additionally been developed to capture semantic information. In

this algorithm, positive and negative alignments for entailment tasks are distin-

guished between, through the use of WordNet and VerbOcean relations. Addi-

tionally, alignment between negation words such as “not” and “none” have been

identified, because they significantly affect the entailment decision.

The generated alignments are used as features for binary classification into “en-

tailing” and “non-entailing” classes using logistic regression with L2 regularization.

The EDA has been evaluated on three standard data-sets: the RTE-3 and the RTE-

6 data-sets from the RTE challenges, and the recently released SNLI corpus. The

RTE-3 data-set is a balanced set of 800 (T,H) pairs for training and development

each. The best accuracy obtained on this data-set is 64.63% with semantic align-

ments. The RTE-6 data-set is a relatively larger data-set with 15,955 pairs for

training, contains 95% negative cases. Approaches have been adopted to handle

this imbalance in data. The best F-score obtained on the RTE-6 data-set is 42.10.

Moreover, the SNLI corpus is a balanced collection of 570,000 manually annotated

(T,H) pairs for 3-way entailment decisions. This data-set has been evaluated on the

RTE-3 metrics, and the best obtained classification accuracy in a 2-way entailment

decision task is 75.27% on the test-set.
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1 Introduction

Formally known as Natural Language Understanding (NLU), making machines compre-

hend human languages is a research question which has gained immense popularity in

recent years. It is challenging due to the complexity of natural languages. NLU is a

subtopic of Natural Language Processing (NLP). It aims to understand how languages

are processed in the brain, and apply the knowledge to develop intelligent systems which

can emulate the process.

Several NLU tasks make use of prior information about semantic relations between multi-

ple snippets of text to generate relevant and more accurate results. Entailment relations

are few such semantic relations between pairs of text snippets. Textual entailment refers

to a directional inference relationship between pairs of text expressions, denoted by ‘T’

(the entailing “Text”) and ‘H’ (the entailing “Hypothesis”). ‘T’ is said to entail ‘H’ if

humans reading ‘T’ would typically infer that ‘H’ is most likely true (Dagan et al., 2013).

For example, in the following pair of sentences, ‘H’ is entailed by ‘T’ because it can be

inferred from ‘T’:

T: As much as 200 mm of rain have been recorded in portions of British Columbia, on

the west coast of Canada since Monday.

H: British Columbia is located in Canada.

Similarly, the following pair holds a “non-entailment” relation between them because ‘H’

is not related to, and can not be deduced from ‘T’:

T: Red Planet Consulting, Inc. is a full-scale project implementation firm that provides

expert Smallworld software services to electric, gas and water utilities.

H: Mars is called ”the red planet”.

These entailment relations between textual pairs are used in myriad of applications. For

example, during information retrieval, query terms should be entailed by all the doc-

uments that are retrieved. Clinchant et al. (2006) have shown a significant boost in

the performance of information retrieval tasks due to textual entailment. Likewise, for

multi-document summarization, the sentences which are already entailed in other existing

sentences in the summary can be omitted. For answering a question, the desired answer

is usually found entailed in a document. Harabagiu and Hickl (2006) have shown that

the use of textual entailment increases the accuracy of an open domain question answer-

ing system by as much as 20%. Moreover, very recently, Ostermann et al. (2015) have

explored the usage of entailment relations for short answer scoring.
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1.1 Task description and complexity

The Master’s thesis aims to explore the task of textual entailment, and develop open

source algorithms to decide entailment relations between pairs of text. In this section,

description and complexity of the task has been discussed.

Natural language is highly variable, ambiguous and complex. Similar meanings can be

expressed in multiple implicit or explicit ways. For example, the following two sentences

express similar content, although they are very different at lexical level:

T: This incident has left me speechless. I can’t be any happier at the turn of events.

H: I’m elated due to the latest development.

Similarly, the following sentence pairs are lexically and syntactically highly similar, and

yet are contradictions of each other:

T: I am anything but a coffee addict.

H: I am a coffee addict.

The task of textual entailment is highly complex in nature because entailment decision

algorithms should identify such ambiguity and variability in content, and should establish

an equivalence between them.

Moreover, according to the task description for entailment, ‘H’ is said to be entailed in

‘T’, if a human being reading a (T,H) pair can infer ‘H’ from ‘T’. This implies that in

certain cases, some world knowledge apart from available content may be required to

derive inference rules. For example, in the sentence pair,

T: Taj Mahal is located in Agra.

H:Taj Mahal is located in India.

it is assumed that the additional knowledge that Agra is located in India is available with

the reader, and ‘T’ is said to entail ‘H’.

Development of systems that address these challenges can result in increasingly intelligent

systems that understand natural language, and can be of immense utility in a myriad of

applications.

1.2 Alignment-based approach to recognize textual entailment

Alignment-based approaches have been extensively used in the past for machine transla-

tion, where an alignment identifies whether words are translations of each other (Brown

et al., 1993). In an entailment decision task, textual alignment refers to identification
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of corresponding units of text snippets between ‘T’ and ‘H’ sentences. These pairs can

either hold the same meaning, or similar but different, or even contradictory meanings.

The following example enlists aligned phrases in a given (T,H) pair:

T: John Smith rode to Seattle and bought a Honda Civic.

H: John drove to Seattle.

Alignment pairs: {{John Smith, John}, {rode, drove}, {to Seattle, to Seattle}}

Identification of such alignments facilitates and supports entailment classification. Once

corresponding snippets of content between ‘T’ and ‘H’ have been identified, they can be

analyzed further to verify if an entailment relation holds.

An explicit alignment component within an entailment decision algorithm allows ab-

straction of feature identification for entailment classification, from complex algorithms

that aim to understand content and identify parallel text snippets. Alignment-based

approaches become increasingly popular for Recognizing Textual Entailment (RTE) in

recent years.

1.3 Literature Review

In this section, the literature associated with the state-of-the-art algorithms to recognize

textual entailment have been discussed. First, the RTE challenges, which were initiated

to promote related research, have been described. Next, a popular open source tool for

deciding entailment relations, the Excitement Open Platform (EOP) has been reviewed.

Further, the systems which have been used as an inspiration and initial point for the

development of the proposed system have been described. In the end, the most recent

work on recognizing textual entailment, the Stanford Natural Language Inference (SNLI)

system has been reviewed.

1.3.1 Recognizing Textual Entailment Challenges

Until 2005, recognition of textual entailment was performed by independent groups un-

der application specific research. Thereby, RTE challenge was initiated as a PASCAL

challenge to promote research in this field, leading towards the development of generic

semantic inference engines usable across several applications.

The first RTE challenge, RTE-1 (Dagan et al., 2006), aimed to compare different ap-

proaches for textual entailment, at the same time setting benchmarks for evaluation. A

balanced data-set of text-hypothesis (T,H) pairs were created for the challenge. These

pairs were adopted from text snippets in the generic news domain, with respect to mul-

tiple NLP tasks - information retrieval (IR), reading comprehension, question-answering
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(QA), information extraction (IE), paraphrase acquisition, machine translation. They

were manually annotated as positive or negative entailment relations, and varied in terms

of inference reasoning scope and difficulty. The distribution of the pairs across different

tasks was not balanced. This promoted the development of generic engines. Several sys-

tems submitted their results in this challenge, with approaches ranging from logical rule

based deductions to a syntactic tree distance comparison. Although the challenge was

not mature yet, the response obtained encouraged several follow-up challenges.

The second PASCAL RTE challenge (Bar-Haim et al., 2006) followed on the lines of the

first challenge to promote continued research in this field. The (T,H) pairs in the RTE2

data-set were compiled from actual outputs of different systems. A balanced distribution

of entailing pairs was obtained from the core semantic tasks - IE, IR, QA and multi-

document summarization. Results from 23 systems were submitted for an evaluation, as

opposed to 17 systems earlier, which indicated a growing interest in these challenges.

The RTE-3 challenge (Giampiccolo et al., 2007) built up on the previous two RTE chal-

lenges. The challenge improved on the previous data-set to support an optional three way

decision to differentiate between contradictions and unknown relations. The development

set was modified to include a limited number of longer texts, forming up to a paragraph.

Further, sharing a resource pool among the systems was possible. The challenge witnessed

several submissions using new approaches and models, with increased accuracy. Results

obtained in the RTE3 challenge encouraged moving further towards realistic distributions.

Following the popularity of the previous challenges, the next RTE challenges were tracks in

the Text Analysis Conference (TAC). Extending the RTE3 task, three-way decisions were

made obligatory in RTE4 challenge (Giampiccolo et al., 2009), along with the classical

two-way decision task. Similarly, in the fifth RTE challenge (Bentivogli et al., 2009),

the main task remained the same. However, a pilot task was introduced, which given a

hypothesis, required identification of all entailing sentences in a document. Contribution

of knowledge bases was additionally evaluated through ablation tests.

The sixth and seventh RTE challenge (Bentivogli et al., 2010) built up on the pilot task

of the fifth RTE challenge, and introduced the difficulty of textual entailment in a more

realistic corpus-oriented setup. The task aimed to explore the potential applicability of

RTE engines to the problem of document summarization. The systems were required

to identify of all sentences in a given corpus that entail a given hypothesis. A set of

potential candidate sentences were retrieved from the corpus through Apache Lucene,

which served as the candidate text sentences for this purpose. The data-set indicated the

actual distribution of entailment in a corpus, where about 95% of the cases were negative.
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1.3.2 Excitement Open Platform

The Excitement Open Platform (EOP) 1 (Magnini et al., 2014) is an open source soft-

ware in Java language, comprising of a suite of multilingual state-of-the-art algorithms to

recognize textual entailment, along with multiple linguistic resources and pipelines. The

EOP was an output of project “Excitement” 2 funded by the European Commission. It

implements the generic, modular and multilingual “Excitement” architecture (Padó et al.,

2014) for textual entailment. Figure 1 shows this architecture.

Figure 1. Excitement architecture

The “Linguistic Analysis Pipeline” (LAP) within the “Excitement” architecture abstracts

annotation modules from core entailment algorithms. The LAP provides multiple pipelines

which add linguistic annotations on input data. UIMA framework (Ferrucci and Lally,

2004) has been used as a container for data in DKPro (de Castilho and Gurevych, 2014)

type system. The “Entailment Core” (EC) provides implementations of algorithms to

recognize textual entailment. These algorithms share a common resource pool which

consists of supported knowledge bases. They are based on inference rules, classification

algorithms, and lexical or syntactic edit-distance between text and hypothesis.

Modular architecture of the EOP supports reuse of existing modules and development of

new algorithms with minimum effort. Each “Entailment Decision Algorithm” (EDA) is

an independent algorithm for deciding textual entailment. Interaction between different

EDAs is not present. However, they can reuse any component implemented withing the

EOP. The EOP framework specifies several interfaces to ease the development process of

a complex system.

The EOP has been developed to promote experimentation with textual entailment in

1https://github.com/hltfbk/Excitement-Open-Platform
2https://sites.google.com/site/excitementproject/
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varied applications. It is aimed to be utilized as a tool to generate the entailment relations

within different applications, similar to tools like a part-of-speech tagger. The Moses

platform (Koehn et al., 2007) used extensively in Machine Translation was an inspiration

for the EOP.

In the third year of project “Excitement”, multiple entailment decision algorithms within

the EOP were developed through a novel explicit alignment-based classification. The next

section, Section 1.3.3 describes one of these algorithms.

1.3.3 Multi-level alignments as an extensible representation basis for Textual

Entailment Algorithms

This work by Noh et al. (2015) is the inspired by the third year agenda of project “Excite-

ment”. It proposes the schema in Figure 2 to abstract an alignment generation component

from a component which applies these alignment links to generate an entailment decision.

It extends the previous EOP architecture to include an explicit alignment component.

All the alignments generated by multiple modules are unified into a single central data-

structure known as “Multi-level alignments”.

Figure 2. Data flow for entailment classification based on multi-level alignments
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It is believed that different alignment links provide different information about text. These

alignments may have different semantics, or may indicate different levels of alignments.

Following this contention, the alignments are unified with each other, instead of selecting

the preferred alignment links.

In the proposed configuration, multilingual alignments are generated. They range from

semantic alignment links added via lexical resources WordNet (Miller, 1995) and VerbO-

cean (Chklovski and Pantel, 2004) for English, Italian WordNet (Artale et al., 1997) for

Italian, and GermaNet (Hamp et al., 1997) and Geman DerivBase (Zeller et al., 2013)

for German, to paraphrase alignments generated through Meteor (Denkowski and Lavie,

2011) package for machine translation. Additionally, in order to deal with Named Entities,

alignment links are added between identical lemmas also.

Once the alignments have been obtained, four features have been used for entailment

decision classification. These features target the coverage of words, content words, verbs

and proper nouns in hypothesis by aligned content in text. These features have been

developed because a higher coverage of entities in hypothesis ensure a higher probability

of entailment.

Furthermore, the developed platform also supports a module to visualize the alignments

produced by the system, built on the BRAT3 library.

1.3.4 Textual Inference Engine

Textual Inference Engine (TIE) is an entailment engine developed by Wang and Neumann

(2007) (Wang, 2011) at the German Research Center for Artificial Intelligence (DFKI).

TIE utilizes a supervised classification approach for textual entailment. It is encapsulated

within the EOP as the “Maximum Entropy Classification EDA”.

In TIE, several features are generated from (T,H) pairs and multiple scores are calculated

from these features. Some of these features are: bag-of-words overlap between ‘T’ and ‘H’,

bag-of-lemmas overlap, an overlap between ‘T’ and ‘H’ using lexical resources WordNet

(Miller, 1995) and VerbOcean (Chklovski and Pantel, 2004), dependency triple overlap and

similarity between dependency trees. Thereby, a maximum entropy classifier is applied

on the scores to generate an entailment decision.

1.3.5 LibLinear Textual Entailment Engine (LITE)

In the past, outside the EOP, Volokh and Neumann (2011) have used alignment scores as

a feature for generating entailment decision. In their system, alignment scores have been

3http://brat.nlplab.org/index.html
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obtained using Meteor (Denkowski and Lavie, 2011) package for Machine Translation,

by assuming text and hypothesis to be translations of each other. The system relies

heavily on feature templates. Several features have been identified, including an n-gram

coverage, dependency triple coverage, named entity and temporal expression coverage,

alignment scores and relative sentence length. Since the system assumes ‘T’ and ‘H’ to

be translations of each other, relative sentence length is very important to account for

alignment scores relative to entailment task. Classification decision is generated through

L1 regularized logistic regression algorithm implemented in LibLinear (Fan et al., 2008).

This entailment engine has been developed to target RTE-6 and 7 data.

1.3.6 Stanford Natural Language Inference

Small size of data-sets in the RTE challenges are a significant limitation for statistical

systems. To overcome these limitations, Stanford Natural Language Inference corpus has

been developed very recently by Bowman et al. (2015). It is a balanced data-set consisting

of manually annotated 570,000 (T,H) pairs, which surpasses the existing data-sets by two

orders of magnitude. It is a new benchmark for evaluation of 3-way entailment decisions,

namely “entailment”, “contradiction” and “neutral”. This corpus supports the training

of neural networks for entailment tasks, thereby promoting the applicability of the state-

of-the-art research techniques to textual entailment.

The organization of the rest of the document is as follows. The proposed approach to

recognize textual entailment, and the tools that will be used for this purpose are described

in Section 3. In Section 4, the data-sets used, experiments conducted on the developed

system, and the obtained results have been discussed. In the following section, Section

5, conclusions have been drawn from the obtained results, along with insights about

improvements that can be incorporated in future. Along with that, a critical analysis of

available tools and resources has been done.
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2 Proposed Approach

In this section, the proposed system will be introduced. Various tools that have been

used during the course of development will be discussed. Thereby, an overall architecture

of the system will be put forward. Thereafter, individual components within the system,

namely the alignment and the scoring components, will be elaborated upon.

Research for the proposed system has been carried out in parallel to the development

of multi-level alignment architecture for textual entailment by Noh et al. (2015). It is

also motivated by the third year agenda of project “Excitement” 4, which focused on

development of alignment-based entailment decision algorithms. Various approaches to

identify alignment links, and thereby to come to an entailment judgement, have been

discussed herewith.

2.1 Overview

In this section, various approaches to identify lexical alignments will be discussed.

The most fundamental way to recognize corresponding text snippets at lexical level is an

exact string match. An exact string match identifies identical pairs of words, that is, the

same form of the same words that are present in both the sentences. For example, in the

following sentence pair,

T: Müller owns a dog.

H: Mueller owned a pet.

an exact string comparison will align the ‘a’s in both the sentences.

Similarly, an exact root word comparison can also be used to identify pairs of correspond-

ing words. If a sentence pair consists of the same word, used in the same way or in a

different manner, this approach would add an alignment link between them. For exam-

ple, in the aforementioned sentence pair, it will result in an additional alignment between

“owns” and “owned”.

However, more often than not, data-sets that are used are noisy. Moreover, tokenization,

which refers to the process of segmenting text into pieces, is usually error prone. Fur-

thermore, minor spelling errors and variations are frequently present in data-sets. Such

variations, and errors in fundamental pre-processing steps like tokenization, significantly

affect the results of systems dependent on exact-comparison based techniques. To over-

come this issue, text fragment similarity can be used to identify aligned pairs of text.

4https://sites.google.com/site/excitementproject/
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Various standard metrics to calculate similarity between two strings are the following:

• Cosine similarity: Cosine similarity between two strings x and y is calculated as,

cosine(x, y) =
|x ∩ y|√
|x||y|

(1)

• Jaccard similarity and distance: Jaccard similarity between two strings x and y is

defined as,

J(x, y) =
|x ∩ y|
|x ∪ y|

(2)

if x and y are both empty, J(x, y) = 1

Jaccard distance measures the dissimilarity between two strings. It is defined as,

dJ(x, y) = 1− J(x, y)

• Sørensen-Dice similarity: Sørensen-Dice similarity coefficient between two strings x

and y is given by the following formula,

s(x, y) =
2|x ∩ y|
|x|+ |y|

(3)

• Overlap similarity: Overlap similarity measure calculates the overlap between two

sets. For two strings x and y, it is defined as:

s(x, y) =
|x ∩ y|

min(|x|, |y|)
(4)

By using these metrics to calculate similarity between two strings, and by setting a simi-

larity threshold, approximately aligned pairs of text snippets can be found. For example,

in the aforementioned sentence pair, an alignment between “Müller” and “Mueller” can

be generated under an appropriate similarity threshold. An exact match can be simulated

through an approximate match by setting a similarity threshold of 1.0.

However, as it can be analyzed from the example, just a lexical match, whether exact

or approximate, is insufficient. Deep understanding of content is required to generate

meaningful semantic alignments. For example, in the previously mentioned sentence

pair, the usage of words “dog” and “pet” correspond to each other and hold significant

information for entailment classification.

Language specific knowledge bases can be used to identify semantic relationship between

pairs of strings. These knowledge bases consist of sets of words grouped and linked
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according to semantic relations between the them. However, these knowledge bases do

not effectively capture the context in which various terms, words and phrases have been

used. Techniques for identification of context are required to disambiguate and link these

terms efficiently.

Apart from the use of linguistic resources to identify semantic relations, word and phrase

vectors can also be used. Word embeddings have been introduced by Bengio et al. (2003)

to learn distributed representations of words based on their context. A word embedding

is a function which maps each word in a data-set to a high-dimensional vector of real

numbers. These vectors are learned such that similar words have similar vector. Such a

property supports the identification of semantically similar content.

2.2 Tools employed

In this section, various tools that have been used to generate the algorithms to recognize

textual entailment will be discussed.

• Excitement Open Platform (EOP): The EOP (Magnini et al., 2014) frame-

work is used as an initial point for the development of new entailment decision

algorithms. The developed algorithms are supported within the EOP. They reuse

existing modules for linguistic pre-processing and query lexical resource database.

To add linguistic annotations to the (T,H) pairs, Maltparser (Nivre et al., 2006)

Lingustic Anotation Pipeline (LAP) within the EOP is queried. The annotations

used during the development are token strings, token lemmas, and part of speech

tags. Additionally, independent of the LAP, chunk annotations are added through

the OpenNLP chunker. Various lexical resources supported by the EOP have also

been explored.

• NemexA: NemexA is a tool developed at the Multilingual Technology lab of the

German Research Center for Artificial Intelligence (DFKI). Given a multi-word

entry, it finds all the similar entries in an external dictionary, based on a character

n-gram vector match algorithm (Okazaki and Tsujii, 2010). It calculates similarity

through a uniform distance calculation API which supports cosine, Jaccard and Dice

similarity measures. Within the EDA, it is used to identify approximate distance-

based alignments between pairs of token strings, lemmas and chunks of text from

‘T’ and ‘H’ respectively.

• WordNet: WordNet (Miller, 1995) is a large lexical database of nouns, verbs, ad-

verbs and adjectives, grouped into sets of synonyms, linked with each other through

relation between the synsets. It is used as a lexical resource to identify semantic
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relations between pairs of words from T and H, specifically, to identify whether they

are synonyms, hypernyms or holonyms of each other.

• VerbOcean: VerbOcean (Chklovski and Pantel, 2004) is a large repository of verbs,

which includes the semantic relationship between those verbs. It is useful for identi-

fying comparative strengths of verbs in T and H, which in turn aids the recognition

of entailment relations.

• Word2Vec: Word2Vec (Mikolov et al., 2013a,b) is a tool which generates context-

dependent high dimensional vectors for single and multi-word terms. It uses different

architectures for this purpose, which do not involve the use of a neural net. It has

been shown that the vectors obtained in such a manner capture the notions of

linguistic similarity (Mikolov et al., 2013c). Similar words tend to have similar

vectors. During the development of the EDA, this property is used to find semantic

alignments between ‘T’ and ‘H’ phrases.

• Weka: Weka (Hall et al., 2009) is a collection of several machine learning algorithms

and various tools for data pre-processing and visualization. These algorithms can

be applied to multiple tasks related to data mining. Within the EDA, Weka is

used as a machine learning library for classification of (T,H) pairs into entailing and

non-entailing classes.

• LibLinear: LibLinear (Fan et al., 2008) is a very fast linear classifier for large data-

sets with millions of instances and features. It supports several SVM and logistic

regression-based classification algorithms. LibLinear logistic regression algorithms

for Weka have been used in the EDA for classification.

2.3 Architecture

In this section, an overall architecture of the proposed system is discussed. The system

takes the input of (T,H) pairs sequentially. It first performs explicit lexical alignments

between snippets of text (T) and hypothesis (H) through a distance-based match of words,

lemmas and phrases. Further, it generates semantic alignments between entities through

the use of knowledge bases and word embeddings. These alignments are used to calculate

several scores. The calculated scores later serve as features or attributes for a supervised

classifier which generates an entailment classification decision.

Complete architecture for the system has been described in Figure 3.
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Figure 3. Nemex Classification EDA

During the training phase, all the (T,H) pairs are processed one-by-one. Scores are calcu-

lated for each pair after generating relevant alignments between segments of ‘T’ and ‘H’.

These scores are thereby written as attribute values to a separate file in the generic, native

data file format supported by Weka (Hall et al., 2009), known as the ARFF file. Once

all the scores for all the (T,H) pairs in the data-set are obtained, the instances present

in the generated file are randomized to remove effects of the order of the (T,H) pairs on

the generated model. Thereby, LibLinear (Fan et al., 2008) wrapper algorithms for Weka

are used to train models for binary classification. Within LibLinear, Logistic Regression

(Harrell, 2013) algorithms with L2 regularization (Ng, 2004) are used while training the

classifier. Logistic regression is a machine learning technique for classifying data into

discrete outcomes. It generates probabilities of outcomes, and the most probable class is

assigned to the data instance. Logistic regression model finds the parameter θ to optimize

the following problem:

argmax
θ

n∑
i=1

log p(y(i)|x(i); θ)− αR(θ) (5)

R(θ) in equation (5) is a regularization parameter. A non-zero regularization parameter

typically prevents overfitting. In case of L2 regularization, R(θ) =
∑n

i=1 θ
2
i .
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Instead of training a base classifier like the logistic regression classifier, cost sensitive

classifiers can be trained using a cost matrix. These classifiers make their base classifier

cost-sensitive. A cost matrix enables either re-weighting the training instances according

to the total costs assigned to each class, or predicting the class with minimum expected

misclassification cost (rather than the most likely class). This type of classification is

particularly useful for training models on imbalanced data-sets. In the cases where a cost

matrix is used, an optimal matrix is chosen through the use of 10-fold cross validation

approach. In k-fold cross validation, the data-set is divided into ‘k’ subsets. Evaluations

are performed by averaging the results obtained in k iterations. In each iteration, (k-1)

subsets are used for training, and one subset is used for evaluating the trained model.

Each subset is used for evaluation once.

During the testing phase, each (T,H) pair in the data-set is preprocessed sequentially

yet again, to generate alignments and calculate feature scores. The same configuration is

used as in the corresponding training phase. Pretrained model files are input to the same

classifier, and an output classification decision is calculated and recorded individually,

independent of other pairs in the testing data-set.

2.4 Nemex Aligners

Within the EDA that has been developed, approximate distance-based alignments be-

tween snippets of (T,H) pairs are identified using Nemex aligners. These aligners employ

the NemexA tool for their working.

The NemexA tool is used to identify all entries from a large collection of entries, whose

similarity to a given multiword entry is greater than some given threshold. It is based on

the CPMerge algorithm (Okazaki and Tsujii, 2010) described below.

Formally, the algorithm finds Yx,α ⊆ V according to the relation,

Yx,α = {y ∈ V | sim(x, y) > α} (6)

where V is a large vocabulary of entries, α is a given threshold, x is the query string

entry, and sim(x, y) is the similarity between strings x and y.

To find such entries from a very large collection, instead of finding similarity between all

pairs of entries, NemexA uses a “τ -overlap join” algorithm. This algorithm reduces the

size of the set of probable entries significantly, thereby making the entire process a lot

faster.

First, vectors are created for each entry, using a specified n-gram size. For example, given

an n-gram size 3, the vector for the term “red color” is the following:
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Term: “##red#color##”

Vector: { ##r, #re, red, ed#, #co, col, or#, r## }

where ‘#’ is used as a delimiter between the words, and ‘##’ are used as starting and

ending symbol for the given term. An inverted index is maintained to store the strings

that generate a given n-gram. Now, as mentioned earlier in equation (1), a cosine distance

between two n-gram feature vectors X and Y of strings x and y respectively is defined as,

cosine(X, Y ) =
|X ∩ Y |√
|X||Y |

(7)

By combining equations (6) and (7), the following conditions to obtain a smaller subset

of strings from the vocabulary V are derived,

dα
√
|X||Y |e ≤ |X ∩ Y | ≤ min{|X|, |Y |} (8)

dα2|X|e ≤ |Y | ≤ b|X|
α2
c (9)

where |X| and |Y | refer to the size of vectors X and Y respectively. Similar steps can be

followed to obtain corresponding conditions for other distance metrics also. Further, the

following property of signature based algorithms (Arasu et al., 2006; Chaudhuri et al.,

2006) are used to reduce the number of candidate strings even more:

Given a set X of size n and a set Y of any size. Let there be any subset Z ⊆
X of size (n− τ + 1). If |X ∩ Y | ≥ τ, then Z ∩ Y 6= φ.

Finally, the set of strings that satisfies all the above conditions is returned to the user.

Due to large reduction in the search space, this algorithm has been found to be very fast

for computing matching entries from a large database.

Now, within the Nemex aligners, the data-set consisting of (T,H) pairs are first annotated

using the Linguistic Annotation Pipeline (LAP) within the EOP (Magnini et al., 2014).

Depending on the type of alignment to be performed, token strings, lemmas, part-of-

speech tags or chunk annotations are required. OpenNLP (Baldridge, 2005) LAP is

used when lemma annotations are not required for alignment. However, in order to

use the lemma annotations, the OpenNLP pipeline is insufficient and MaltParser (Nivre

et al., 2006) annotation pipeline is used instead. The MaltParser pipeline uses TreeTagger

(Schmid, 1994) to compute the lemma annotations. If required, chunk annotations are

added using the chunker from the OpenNLP project.

The pipeline to perform an alignment through NemexA is described in Figure 4.

15



Figure 4. Nemex alignment pipeline (Direction T-to-H)

In the most fundamental setup of these aligners, a gazetteer is first created in the format

supported by NemexA, from all relevant entries in T or H (depending on the direction

of processing). Spaces in multiword entries are replaced with a prespecified delimiter.

During look-up, it can be decided whether the delimiter should be considered or ignored.

The entries are processed as a vector of character n-grams of some configured length.

Sense, frequency and relative frequency of the entries are also stored in the gazetteer. An

inverted list is maintained to identify the offsets in T/H that generate a given entry. If the

specified direction of processing is text-to-hypothesis (T-to-H), a gazetteer is generated

using annotation entries in the text ‘T’. If it is vice-versa, hypothesis-to-text (H-to-T),

the gazetteer is instead generated from annotation entries in the hypothesis ‘H’. If the

direction is left unspecified, “H-to-T” is selected by default.

After obtaining a gazetteer from the ‘T’/‘H’, NemexA similarity calculation functions are

queried using entries in ‘H’/‘T’. All entries in the gazetteer, which are similar to an entry

in ‘H’/‘T’, are identified. This similarity calculation is done under a prespecified similarity

threshold and distance metric. Thereby, a directional alignment link is added between

the queried entry and all the appropriate offsets of the obtained matching entries.

2.4.1 Nemex Bag-of-words Aligner

Nemex bag-of-words aligner, as suggested by its name, performs an alignment between

words in text and hypothesis through the use of the tool NemexA. The aligner functions
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under its basic settings. The words are the strings corresponding to tokens generated by

a tokenizer. A NemexA gazetteer is created from words in ‘T’/‘H’, and the words in the

gazetteer similar to all the words in ‘H’/‘T’ are found. Similar words in T and H are

aligned under a similarity threshold. An external file containing stop-words in English is

available. Stop-words in the content of (T,H) can be ignored by comparing content words

with the words in this list.

A bag-of-words exact alignment (similarity threshold 1.0), without stop-words removal,

provides a baseline for evaluation.

2.4.2 Nemex Bag-of-lemmas Aligner

Nemex bag-of-lemmas aligner aligns token lemmas in ‘T’ and ‘H’. A lemma refers to the

canonical or the base form of a word, without any inflections. An example for such a

token lemma is the following:

Words: {“come”, “came”, “coming”, “comes”}
Lemma: “come”

Using word lemmas instead of exact word forms allows for alignment of different forms of

the same word. An alignment should identify corresponding units of text, whether or not

meaning the same. Word lemma alignments enable such a match to some extent.

This aligner functions in a similar manner as the Nemex bag-of-words aligner, with a

difference being in the entities that are aligned. In addition to the fundamental setup

of the aligners, additional semantic alignments are supported through WordNet (Miller,

1995).

Token lemmas, along with their part-of-speech tags, can be looked up in WordNet to

expand matching relations. These relations are specified as configurable parameters. Ac-

cording to our hypothesis, for textual entailment to hold, words in ‘H’ should be synonyms,

hypernyms or part-holonyms of words in ‘T’. Synonyms are groups of words which have

nearly the same meaning. Example:

Synonym pairs: {‘quickly’, ‘rapidly’}

Two words ‘w1’ and ‘w2’ are said to be hypernyms of each other, if ‘w1’ is a word whose

meaning forms a broad category, and the meaning of ‘w2’ falls within that category.

Example:

Word: ‘blue’

Hypernym: ‘color’

Similarly, ‘w1’ is said to be a holonym of ‘w2’ if ‘w2’ is a part of ‘w1’. Example:
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Word: ‘hand’

Holonym: ‘body’

When an entry from ‘T’/‘H’ is added while creating a NemexA gazetteer, all the matching

entries from WordNet under the specified relations and word sense are also added to it,

with the same offsets as the original entry. During look-up, alignment links based on

these additional entries are also added. It results in positive semantic lexical alignments

through WordNet.

2.4.3 Nemex Bag-of-chunks Aligner

Nemex bag-of-chunks aligner also performs an alignment similar to approaches mentioned

above.

First of all, chunks of text are obtained using the “chunker” from the OpenNLP project.

This chunker divides the text into the segments noun phrase, verb phrase, prepositional

phrase and other. Part-of-speech (POS) and token annotations are required for this

chunker to function. Identified chunks of text serve as the entities that are aligned. This

results in a phrase-level alignment of text.

In a NemexA gazetteer, these chunks of text are treated as multi-word entries, where

words are separated by a delimiter. The basic aligner works in the same manner as in the

other two cases.

WordNet (Miller, 1995) look-up in this aligner is performed in a different manner than

the previous one. The nouns in the chunks of text are looked up in WordNet. Multiple

entries are generated from each chunk entry by replacing nouns with their corresponding

matching entries. Example:

Chunk: “the dog and the cat”

WordNet queries: {‘dog’, ‘cat’ }
Retrieved entries for dog: {‘x’,‘y’}
Retrieved entries for cat: {‘p’,‘q’}
Finally generated entries: “the ‘l’ and the ‘m’ ”; ∀ ‘l′ ∈ {‘dog′, ‘x′, ‘y′} and ∀ ‘m′ ∈
{‘cat′, ‘p′, ‘q′}

In a (T,H) pair, length of the hypothesis ‘H’ is typically more that length of the text

‘T’. Due to this property, “H-to-T” direction of processing is preferred in Nemex bag-

of-chunks alignments which require WordNet look-up. Generating the gazetteer from

H entries instead of T lowers the number of WordNet look-ups. It hence lowers the

number of matching synsets, the permutations generated, and thereby the time required

for processing.
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Given the variability of natural languages, the same information can be expressed in

multiple ways. It is highly unlikely that the same content is expressed using the same

phrases. In order to align the phrases which are similar, but not necessarily exact, the

Nemex bag-of-chunks aligner uses a lower similarity threshold as opposed to the Nemex

bag-of-words and Nemex bag-of-lemmas aligner.

2.5 Nemex Scorers

Once Nemex alignments have been generated, various useful features are identified, based

on these alignments. For each feature, a score is calculated, which is used during the

classification phase. The following scores are calculated for each of the three Nemex

aligners:

• Based on Task setting: 4 scores are calculated based on the task that the (T,H)

pairs have been obtained from - Information Extraction (IE), Information Retrieval

(IR), Question Answering (QA) and Summarization (SUM). These scores are 1 if

the pair belongs to the corresponding task, and 0 otherwise. If the task information

is absent, all these scores are 0. For each instance, maximum one of these four scores

is 1.

• Based on number of alignments: Multiple features that target the extent of

overlap between (T,H) pairs are identified, and corresponding scores are calculated.

This is based on the contention that higher the positive overlap between ‘T’ and

‘H’, greater is the possibility for entailment. Different alignments generated by the

Nemex aligners indicate different levels of positive correspondence between T and

H, ranging from surface level to semantic level. The following scores are calculated

dependent on the number of generated alignments:

1. |T&H||T | : Number of aligned entities between text and hypothesis, divided by the

total number of entities in text. This normalizes the overlap between ‘T’ and

‘H’ w.r.t the length of ‘T’.

2. |T&H||H| : Number of aligned entities between ‘T’ and ‘H’, divided by the total

number of entities in ‘H’. This normalizes the overlap between ‘T’ and ‘H’ w.r.t

the length of ‘H’.

3. |T&H||T | ∗
|T&H|
|H| : Product of the previous two scores. This normalizes the overlap

between ‘T’ and ‘H’ w.r.t the length of the text as well as the hypothesis in a

(T,H) pair.

• Based on content coverage under alignment: When a phrase-level alignment

is performed, the number of alignments is low because the number of phrases in the
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content is low. Some of these phrase alignments hold meaningful information. For

example, the alignments may indicate whether the actor and the patient in the (T,H)

pair are the same; whether the actions described in the text and the hypothesis

are contradictions of each other, or do they lead to an entailment relation; and

many more similar significant ideas. The following attribute scores are calculated

to account for such information:

1. Coverage of words under alignment: This score calculates the percentage

of words in the hypothesis that are covered by the generated phrase alignments.

These words are identified through the token strings segmented by a tokenizer.

It is believed that higher the overlap, greater is the possibility for a positive

entailment.

2. Coverage of content words under alignment: Nouns, adjectives, and

verbs in snippets of text indicate the central content in the text. Identification

of these terms allows processing significant information. These terms - verbs,

nouns and adjectives, are treated as content terms. A score is calculated to find

the percentage of content terms in hypothesis that have been positively aligned

in a given (T,H) pair. This score is then used as a feature for classification.

3. Coverage of verbs under alignment: Verbs denote actions. Comparison

of actions taking place in the text and hypothesis provides a reasonable idea

about the events discussed in the two. The coverage of verbs in the hypothesis

under the alignment of phrases in (T,H) is used as a feature score to decide

about textual entailment.

4. Coverage of proper nouns under alignment: Proper nouns, or Named

Entities (NEs), are significant in comprehending meaning of some text. The

subjects and objects, or actors and patients, are usually denoted through ‘NE’s.

The percentage of ‘NE’s in the hypothesis that have been included under a

positive alignment support the decision about a positive entailment, and are

used as an attribute score as well.

2.6 Semantic Phrase Aligner

So far, the obtained alignments using Nemex aligners perform a semantic abstraction

through the use of WordNet. In this section, we discuss the usage of embedded vectors

to find semantic alignments between snippets of text and hypothesis in a (T,H) pair.

An embedded word vector ‘v(w)’ refers to a distributed representation of a word ‘w’ with

a vector of real numbers. For example, the word “man” may be represented with a vector

like:

v(man) = [0.0, 0.3,−0.7, 1.0, ...]
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The size of these vectors typically range from 200 to 500 dimensions. Each dimension is a

feature which should ideally capture syntactic and semantic patterns in the data. Higher

the number of dimensions, more should be the number of captured linguistic patterns.

These vectors can be visualized using tools like t-SNE (Van der Maaten and Hinton,

2008). A sample visualization of embedded vectors is given in Figure 5.

Figure 5. 2D T-SNE word embeddings visualization by Turian et al. (2010) on features

generated by Collobert and Weston (2008)

During the development, pretrained word embeddings generated using Word2Vec (Mikolov

et al., 2013a,b) have been used. Word2Vec is a tool which generates word vectors using

simple architectures that have fast processing speed, allowing for scaling to larger data-

sets. Word2Vec makes use of two different architectures for training the vectors: the

Continuous Bag-of-Words (CBOW) architecture and the skip-gram architecture.

The CBOW architecture generates word vectors through a task which involves prediction

of a word given its context. On the contrary, the skip-gram architecture predicts the

context terms given a word. For example, in the following

Sentence: “I shopped for groceries from the supermarket”

the CBOW model could be trained using the words:

Input: {“I”, “shopped”, “for”, “from”, “the”, “supermarket”}
Output: “groceries”
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Figure 6. Architecture for Word2Vec CBOW and skip-gram models (Mikolov et al.,

2013a)

Similarly, considering the same sentence, the skip-gram model could be trained by

using:

Input: “groceries”

Output: {“I”, “shopped”, “for”, “from”, “the”, “supermarket”}

The skip-gram technique performs better in learning vectors for infrequent terms as op-

posed to the CBOW architecture.

Vectors are typically learned from a large training corpus. In such corpora, word distribu-

tion is highly imbalanced. Little information is gained by co-occurrence of a frequent word

like ‘a’ with infrequent terms like nouns. However, co-occurrence of words like “Neckar”

and “river” add a lot of information. In order to learn good vector representations, each

word is discarded with a probably computed using a formula,

P (wi) = 1− sqrt( t

f(wi)
)

Where t is a threshold, typically around 10−5, and f(wi) is the frequency of a word wi.

This sub-samples the frequent terms, preserving well the original frequency rank.

Negative sampling technique is used to further speed up the word2vec training process. In

22



Figure 7. Captured relations among trained Word2Vec vectors (Mikolov et al., 2013a)

this technique, only ‘k’ negative training samples are used corresponding to each positive

context of an entity, as opposed to all other negative entities in the vocabulary. It applies

a simplified technique of Noise Contrastive Estimation (NCE) (Gutmann and Hyvärinen,

2012) for this purpose.

Embedded vectors encode the meaning of a word. Similar words usually lie close to

each other in the vector space. It has been shown that these vectors also capture sev-

eral linguistic associations like notions of gender and tense. Basic mathematical oper-

ations on these vectors can be used to assess the learned associations. For example,

vector(“Delhi”)− vector(“India”) + vector(“Germany”) gives us a vector which lies the

closest to the vector for the word “Berlin” in the corresponding vector space. Some other

examples of the captured associations are given Figure 7.

In order to identify semantic alignments between phrases of ‘T’ and ‘H’ in a (T,H) pair

in the given data-set, the data-set is first annotated using a Linguistic Analysis Pipeline

(LAP) within the EOP (Magnini et al., 2014). Basic tokens and part-of-speech anno-

tations are required for the functioning, which makes basic pipelines like the OpenNLP

(Baldridge, 2005) pipeline suitable. Maltparser (Nivre et al., 2006) pipeline also provides

the required annotations. Further, chunks of text and hypothesis are obtained using the

“chunker” from the OpenNLP project. Thereby, vectors for these chunks, or phrases, are

obtained using word vectors. Word vectors used during the development are the vectors

trained on a corpus obtained from Google News, consisting of about 100 billion words.

The corresponding vocabulary size for this corpus is 3 million, where the entities contain

both words and automatically derived phrases. The CBOW architecture was used for

training, with sub-sampling using threshold 1e-5, and with negative sampling with 3 neg-

ative examples per each positive one. The number of dimensions of the generated vector

set is 300.
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Indian + actor Swiss + currency Russian + jet German + drink

actor Kabir Bedi swiss franc Cessna Citation XLS ###ml glasses

Aamir Khan Shahrukh Khan curency Yakovlev Yak Franziskaner

Abhishek Bachan Russian Rouble Citation Encore Glenlivet Scotch

Ananth Nag Forint turboprop airliner + Hanzo

filmmaker BR Chopra economies Aeroflot ounce sugar sweetened

Table 1. Top five closest terms for given queries

Basic arithmetic operations can be performed on word vectors to obtain meaningful re-

sults. Vectors for phrases are calculated using a composition of individual vectors of each

word in that phrase. The composition operator used for this calculation is the basic ‘sum-

mation’ operator. Table 1 shows the closest five terms obtained on querying words joined

with addition operator in the Google News vectors.

During the calculation of phrase vectors, all the words except proper nouns are converted

to lowercase. An identification for proper nouns is performed using part-of-speech tags

that have been added by the annotation pipeline. The words which are not present in

the vocabulary of the Google News corpus, and the punctuation symbols are ignored.

Vectors for the rest of the words are added. Stop-words have not been removed during

this calculation. For example, in the noun phrase, “Chris, Bill, and the cat’s Owner”, if

“Chris” is not present in the vocabulary, the vector will be calculated as follows:

vector(“Chris and the cat′s owner”) = vector(“Bill”)+vector(“and”)+vector(“the”)+

vector(“cat”) + vector(“owner”)

After calculating this sum, the resulting vector is normalized to find a final phrase vector.

To make training and testing faster, these vectors for the complete data-set are calculated

in advance and are input directly for generating alignments.

Once the vectors for phrases in ‘T’ and ‘H’ have been obtained, a similarity between

them is calculated in a brute-force manner to generate all possible alignments. A cosine

distance is used as a similarity metric, which is calculated as dot product of normalized

vectors. If the cosine distance is greater than a prespecified threshold, an alignment link

between the phrases is added.

In the other alignment techniques discussed earlier, alignment links are added only be-

tween the entities which indicate a positive entailment. A Nemex match without WordNet

only returns positively similar relations. Within the Nemex aligners, WordNet is used to

query only such relations which indicate entailment. However, when semantic alignments

are obtained using embedded word vectors, such controls are lost. Similarity between

vectors indicates a similarity between the usage of corresponding entities in some context.

These similarities may be positive or negative with respect to an entailment relation. For
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example, there may be a generated alignment link between the phrases “is conservative”

and “is liberal”, given that the similarity threshold permits this.

In order to distinguish between these positive and negative alignment links, usage of the

knowledge bases WordNet (Miller, 1995) and VerbOcean (Chklovski and Pantel, 2004) has

been proposed. Words in the aligned pair of phrases are inspected for negative relations

among them. These negative relations refer to those relations which indicate a non-

entailment or a contradiction relation. Examples of such relations are antonym pairs in

WordNet, and those relations in VerbOcean, where the hypothesis terms are stronger-than

or opposite of the terms in the text. Antonyms are sets of words, whose meanings are

opposite of each other. “Antonym” relation in WordNet is equivalent to the “opposite-of”

relation in VerbOcean. Example:

Antonyms: {open, close}

Similarly, the “stronger-than” relation is defined between two words ‘w1’ and ‘w2’, such

that the strength of ‘w1’ is more than that of ‘w2’. Example,

T term: {stab}
H term: {kill}
Relation: {H is stronger-than T}

Any alignment link between a pair of phrases is deemed to be negative, if a negative

relation between any pair of words between the two is identified. For example, if the

following two phrases were aligned using an embedded chunk vector alignment scheme,

T phrase: “has been stabbed”

H phrase: “has been killed”

Because “killed” is stronger-than “stabbed”, the phrases would hold a negative align-

ment. Similarly, the following two pairs would be negatively aligned because the words

{shout,whisper} are antonyms of each other:

T phrase: “is shouting”

H phrase: “has been whispering”

The pipeline for a semantic alignment between vectors of phrases using word embeddings

is elaborated in Figure 8.

2.7 Semantic Phrase Scorer

Once alignments have been generated between phrases in text and hypothesis using em-

bedded word vectors trained by Word2vec (Mikolov et al., 2013a), various features for en-
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Figure 8. Embedded chunk vector alignment pipeline

tailment classification are identified and scores are calculated. These features and scores

are similar to those discussed in section 2.5.

As discussed in section 2.6, these alignments between phrases are categorized as positive

and negative alignments. Positive alignments refer to those alignment links, in which

pair of phrases hold similar meaning and may contribute towards a positive entailment.

Similarly, negative alignments refer to those alignment links in which phrases may have

contradictory meanings, or meanings which may contribute towards a non-entailment.

To train a classifier for a binary entailment decision task, following scores are calculated

in the proposed system based on the semantic phrases alignments identified through the

use of embedded word vectors:

1. Number of positive alignments with respect to hypothesis: This feature is

developed on the presumption that more the number of phrases in hypothesis that

are similar in meaning to some phrase in text, higher are the chances for a positive

entailment. A score is calculated as |positive T&H phrase alignments|
|H phrases| .

2. Number of negative alignments w.r.t hypothesis: This feature is associ-

ated with a contention that presence of phrases in hypothesis that mean oppo-

site to or imply stronger actions than corresponding content in text result in a

higher possibility of a non-entailment relation. Score is calculated as the fraction -
|negative T&H phrase alignments|

|H phrases| .

3. Coverage of content under positive alignments: Multiple scores are calculated

based on the coverage of terms like words, content words, verbs and proper nouns

by positive alignment links between ‘T’ and ‘H’, in the same manner as discussed

in Nemex scoring techniques in Section 2.5. The difference between coverage scores

for the “Nemex bag-of-chunks aligner” and the “Embedded chunk vector aligner”

26



is that only positively aligned links are used in the latter case. Nemex aligners

add only positive alignment links to the (T,H) pairs, which makes this distinction

irrelevant.

2.8 Negation Scorer

While identifying entailment relations, some terms are more significant than other terms

in a (T,H) pair. These terms alter the meaning of a statement significantly. Some of

such terms are negation words like “no”, “not”, “none”, “neither”, etc. Non-uniform

distribution of such words across the text and hypothesis often result in contradictions.

For example,

T: Spain did not win the championship.

H: Spain won the championship.

Relation: Non-entailment (contradiction)

Similarly, if the hypothesis contains an antonym of a word in the text, along with a

negation word around it, the meaning is frequently inverted back to the meaning of the

text. For example,

T: I like beer.

H: I do not hate beer.

Antonym pairs: {like, hate}
Negation words in H: not

Relation: Entailment

Calculation of a negation score while training an entailment decision classifier is important

due to such patterns. In the proposed system, the relative distribution of negation words

in ‘T’ and ‘H’ has been used to calculate such a score.

First, the data is tokenized using any of the linguistic annotation pipelines supported by

the EOP. Thereby, obtained token strings are matched against a set of negation words,

which are input as an external file. A counter for negation terms is increased every time

a positive exact match is found. Once the number of negation terms in both text and

hypothesis have been obtained, a negation score is calculated as follows:

• tNeg = number of negation words in T
number of tokens in T

• hNeg = number of negation words in H
number of tokens in H

• If tNeg is zero, negation score is the value of hNeg.

• Otherwise, if hNeg is zero, negation score is the value of tNeg.
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• Otherwise, negation score is the fraction hNeg
tNeg

.

In Section 2, different approaches to generate alignments between entities in text and hy-

pothesis were discussed. The working of Nemex bag-of-words, Nemex bag-of-lemmas and

Nemex bag-of-chunks aligner, using the NemexA tool developed at DFKI, Saarbrücken,

was elaborated along with techniques to calculate scores for different features using these

alignments. Furthermore, techniques were discussed to semantically align phrases in text

and hypothesis using word vectors generated by Word2Vec. Among these alignments,

positive and negative alignments were distinguished between, and various scores were cal-

culated for features related to entailment classification. Moreover, a negation score was

calculated to account for drastic changes in meaning due to the use of negation terms like

“no”. Using the calculated scores, an architecture which performs a logistic regression

classification using L2 regularization was proposed to train an entailment classification

model.

In the next section, Section 3, the evaluations performed and the results obtained have

been discussed.
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3 Evaluations and Results

3.1 Data-sets and Evaluation Metrics

The proposed EDA has been evaluated on three standard data-sets in English language,

which have been introduced earlier in sections 1.3.1 and 1.3.6 - the RTE 3 and 6 data-

sets from RTE challenges, and the SNLI corpus. Standard evaluation metrics from the

RTE challenges have been used to assess the performance of the developed algorithms

and compare it with other equivalent systems. In this section, these data-sets will be

described along with the corresponding evaluation metrics used.

3.1.1 RTE-3 data-set

The English data-set from the third challenge in the series of Recognizing Textual Entail-

ment challenges, RTE-3, consists of 800 pairs of text and hypothesis for development and

testing each, balanced between two labels - entailment and non-entailment. 200 pairs have

been obtained from each of the following Natural Language Processing (NLP) tasks: in-

formation extraction, information retrieval, question answering and multi-document sum-

marization. The pairs have been extracted from freely available sources like WikiNews

and Wikipedia, and are mostly outputs of web based systems for the given tasks.

Text (T) in the (T,H) pairs in the data-set consists of longer content, constituting up

to a paragraph. However, the corresponding hypothesis (H) is typically just a sentence.

Longer texts pose a requirement for discourse analysis. Moreover, the texts (T) may

consist of imperfect grammar or style, where minor spelling and punctuation errors have

been corrected. However, the hypotheses (H) have been cross-verified by a native English

speaker.

Entailment decisions in the data-set assume the availability of common world knowledge.

In case of partial entailment of a hypothesis by a text, a non-entailment judgment is

provided. Highly probable, but not completely certain cases are assumed to be positively

entailing cases.

Two sample pairs from the RTE-3 data-set are the following:

T: “The Extra Girl” (1923) is a story of a small-town girl, Sue Graham (played by Mabel

Normand) who comes to Hollywood to be in the pictures. This Mabel Normand vehicle,

produced by Mack Sennett, followed earlier films about the film industry and also paved

the way for later films about Hollywood, such as King Vidor’s “Show People” (1928).

H: “The Extra Girl” was produced by Sennett.
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Entailment class: Entailment

Task: Information Extraction

T: Stolen Warhol works recovered: Amsterdam police said Wednesday that they have

recovered stolen lithographs by the late U.S. pop artist Andy Warhol worth more than $1

million. Dali’s paintings are still missing.

H: Millions of dollars of art were recovered, including works by Dali.

Entailment class: Non-entailment

Task: Summarization

An accuracy percentage is used to evaluate the performance of the proposed algorithms

on the RTE-3 data-set. Accuracy refers to the fraction of correct classifications, with

respect to total number of instances. For a binary classification task, accuracy is defined

as,

Accuracy =
True Positive+ True Negative

total no. of instances in test set
, (10)

where true positive and true negative are defined as given in table 2.

True class

A

True class

not A

Predicted class

A

True Positive

(TP)

False Positive

(FP)

Predicted class

not A

False Negative

(FN)

True Negative

(TN)

Table 2. Performance table where instances have class label A

3.1.2 RTE-6 data-set

English data-set from the sixth Recognizing Textual Entailment challenge, RTE-6, con-

sists of a corpus and a list of hypotheses, instead of a set of (T,H) pairs. The task is to

find all the sentences in the corpus that entail a given hypothesis. The data-set has been

developed in a summarization setting. Corpora have been selected from a summariza-

tion task data-set, and most of the hypotheses are sentences from this data-set that have

been included in automatic summaries generated by summarization systems. However, to

support a pairwise approach, a list of sentences retrieved using Apache Lucene for each

hypothesis is also provided. The entire data-set is divided into 20 topics - 10 each for

development and testing. It is organized as follows: there are two clusters of documents

- cluster A with 10 documents from an earlier publication date and cluster B with 10
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documents from a later date. There are up to 30 hypotheses for each topic from clus-

ter B documents, and up to 100 candidate sentences for each hypothesis from cluster A

documents. The hypotheses have been rephrased as independent sentences by resolving

discourse references and applying minor syntactic and morpho-syntactic changes. How-

ever, the candidate text sentences have been left unchanged.

This organization of data-set generates 15,955 (T,H) pairs in the development set, out

of which 897 pairs result in a positive entailment of hypothesis by text. Similarly, there

are a total of 19,972 generated (T,H) pairs in the test set, out of which 945 are positive

entailment relations. 89 hypotheses in the development set, and 100 in the test set do not

have any corresponding entailing text sentences.

The data-set reflects entailment distribution in a natural setting, which consists of only

about 5% of positive cases. This presents all the challenges faced while identifying entail-

ment relations in a real task. One example of such a challenge is discourse identification

in a text corpus. All implicit references to previously mentioned date, time, event, entities

etc. in the given topic need to be resolved. Publication date of the document should also

be tracked for time and tense resolution.

To evaluate system performance on the RTE-6 data-set, micro-averaged F-score is calcu-

lated on the entailing sentences retrieved by the system for the entire test corpus (com-

posed of 10 topics), compared with the entailing sentences in the gold standard. Further,

a macro-averaged F-score is also calculated by calculating precision, recall and F-score

for each topic separately. Only positively entailing cases are considered for evaluation.

First of all, precision, recall and F-score are defined in the following paragraph. Thereby,

micro and macro-averaged precision, recall and F-score are explained.

For this entailment decision task, precision refers to the fraction of correct positive clas-

sifications, out of all the sentences that have been classified as positively entailing the

hypothesis. It is defined as:

Precision =
True Positive

True Positive+ False Positive
(11)

Similarly, recall refers to the fraction of correct positive classifications, out of all the

positively entailing sentences present in the corpus. It is defined as:

Recall =
True Positive

True Positive+ False Negative
(12)

Based on precision and recall, an F-score is calculated as follows:
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F − score(β) =
(1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

, (13)

where β is chosen as 1 unless explicitly specified otherwise.

Now, micro-average precision, recall and F-scores are defined as follows:

Micro-average precision refers to the fraction,

micro average precision =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
, (14)

where n is the number of topics in the test-set, TPi is the number of true positives for

topic i, and FPi is the number of false positives for topic i.

Similarly, n and TPi being the same as before, micro-average recall is calculated as,

micro average recall =

∑n
i=1 TPi∑n

i=1(TPi + FNi)
, (15)

FNi is the number of false negatives for topic i.

Micro-average F-score is calculated as in Equation 13 using micro-averaged precision and

recall values instead.

Furthermore, macro-average precision, recall and F-score across topics are defined below.

macro average precision =
1

n

n∑
i=1

Pi, (16)

such that n is the total number of topics in the test-set, and Pi is precision for topic i.

macro average recall =
1

n

n∑
i=1

Ri, (17)

with n being the same as before, and Ri being recall for topic i.

Macro average F-score is calculated in the same manner as Equation 13 using macro-

averaged precision and recall values.

Corresponding percentage values of these scores are recorded for comparison with scores

of state-of-the-art systems.
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3.1.3 Stanford Natural Language Inference corpus

The Stanford Natural Language Inference (SNLI) corpus is a very new and a very large

corpus in English language for identifying entailment relations. It consists of 550,152

pairs of text and hypothesis for training, and 10,000 pairs each for development and test-

ing purposes. The data-set has been manually annotated for a balanced composition

for a three-way entailment task - entailment, contradiction and semantic independence

(neutral). In the cases where annotators could not agree on a class, a ‘-’ label has been pro-

vided. Entity and event co-references have been controlled to a great extent during corpus

development, which eliminates the requirement for discourse identification. Hypotheses

length in the corpus averages to 8.3 tokens, being shorter than texts which contain 14.1

tokens on average. Moreover, majority of sentences in the data-set are syntactically com-

plete.

A few sample (T,H) pairs from the SNLI corpus is given below:

T: This church choir sings to the masses as they sing joyous songs from the book at a

church.

H: The church is filled with song.

Entailment class: Entailment

T: This church choir sings to the masses as they sing joyous songs from the book at a

church.

H: The church has cracks in the ceiling.

Entailment class: Neutral

T: This church choir sings to the masses as they sing joyous songs from the book at a

church.

H: A choir singing at a baseball game.

Entailment class: Contradiction

This corpus is two orders of magnitude larger than other available resources for textual

entailment, and has been developed to promote the usage of machine learning techniques

in the field of Natural Language Inference (NLI).

Performance of the developed algorithms on the SNLI corpus has been evaluated using the

same standards as the RTE-3 data-set: accuracy on a two-way entailment decision task.

“Neutral” and “contradiction” labels are both considered as non-entailment relations for

this evaluation.
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3.2 Evaluations Performed and Results

In this section, results corresponding to evaluations performed on different configurations

of the developed classification algorithm will be discussed. During all the evaluations,

a standard configuration of the NemexA tool has been used. This configuration uses

n-grams of 3 characters to generate gazetteer entry and query vectors without ignoring

duplicate n-grams. ‘#’ is used as a multi-word separator. However, similarity measure and

threshold have been varied during the process. These similarity measures and thresholds

have been specified while describing each experiment.

3.2.1 Evaluations - RTE3 data-set

Multiple evaluations have been performed on English RTE-3 data-set to find an optimal

configuration for the system. This optimal configuration is thereby used to evaluate

system performance on other data-sets.

In this section, results for these evaluations have been discussed. First, the baseline

results for the developed system on RTE-3 data-set have been recorded. Further, effect

of pre-processing the data-set by stop-words removal has been shown. Thereafter, effect

of approximation on entailment classification accuracy has been discussed for all the

supported scorers. Differences between T-to-H and H-to-T directions of processing has

also been shown here. Later, effect of coverage features has been analyzed for phrase

alignments generated through Nemex scorers and word embeddings. In the end, the best

obtained accuracy has been compared with that of the state-of-the-art systems.

Table 3 lists the baseline accuracy for the developed system on RTE3 data-set. This base-

line configuration is an exact Nemex bag-of-words scoring, without any pre-processing like

stop-words removal. Accuracy for all the supported distance metrics have been recorded.

Results for both the directions of processing, T-to-H and H-to-T, have been compared.

S.No. Similarity Measure Direction Accuracy

1 Cosine T-to-H 60.50

2 Dice T-to-H 60.63

3 Jaccard T-to-H 60.63

4 Cosine H-to-T 60.75

5 Dice H-to-T 60.25

6 Jaccard H-to-T 60.50

Table 3. Baseline accuracy: Exact Nemex Bag-of-words scoring without stop-words

removal
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S.No. Similarity Measure Direction Accuracy

1 Cosine T-to-H 63.00

2 Dice T-to-H 62.88

3 Jaccard T-to-H 63.25

4 Cosine H-to-T 63.38

5 Dice H-to-T 63.13

6 Jaccard H-to-T 63.25

Table 4. Accuracy: Exact Nemex bag-of-words scoring without stop-words

These baseline accuracy are different for different similarity measures. This is so because

similarity metrics are defined differently. Similarity value changes with a change in the

similarity measure being used.

Moreover, accuracy also varies on varying direction of processing. This is due to the

manner in which scores for different features are calculated. If a NemexA gazetteer is

generated from words in a hypothesis (H), the maximum number of alignment links would

be the number of words in the corresponding text (T). However, if this gazetteer is created

from words in a text (T) instead, the maximum number of alignment links that can be

added would be the number of words in the corresponding hypothesis (H). Difference in

number of alignments results in different values for calculated feature scores.

Next, in Table 4, effect of stop-words removal under an exact Nemex bag-of-words match

has been shown. Thereby, this effect has been visualized in Figure 9.

At least 2% increase in accuracy is observed on removing stop-words. This shows that

presence of very frequent terms in data results in a loss of meaningful information when

entailment classification is performed using bag-of-words scoring. Following this analysis,

stop-words have been removed for further evaluations.

Next, the effect of a distance based match, as opposed to an exact match, has been

shown. NemexA similarity threshold has been varied for different distance metrics, and

corresponding accuracies on the RTE-3 test-set have been recorded. These effects have

been shown under the configuration Nemex bag-of-words scoring, when stop-words have

been removed. Table 5 lists the accuracies obtained.

Graphs in Figures 10 and 11 visualize the effect of approximation on accuracy of classifi-

cation of instances in RTE-3 test-set, with respect to directions of processing T-to-H and

H-to-T respectively.

As it can be seen from the plots, different similarity measures show similar trend of

change in accuracy on varying similarity threshold, for both the directions of processing.

Accuracy improves on decreasing the similarity threshold. However, beyond a certain
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Figure 9. Effect of stop-words removal on exact bag-of-words scoring

Threshold
Dice TtoH

accuracy

Dice HtoT

accuracy

Cosine TtoH

accuracy

Cosine HtoT

accuracy

Jaccard TtoH

accuracy

Jaccard HtoT

accuracy

0.70 64.63 64.50 64.50 64.38 65.00 64.50

0.75 64.63 64.50 64.63 64.63 64.50 64.75

0.80 64.63 64.88 64.88 64.63 64.13 64.00

0.85 64.75 64.75 64.50 64.63 63.75 63.63

0.90 63.75 64.13 63.75 63.75 63.25 63.50

0.95 63.25 63.25 63.25 63.38 63.13 63.00

1.00 62.88 63.13 63.00 63.38 63.25 63.25

Table 5. Effect of distance based match on Nemex bag-of-words scoring after stop-words

removal
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Figure 10. Nemex bag-of-words scoring: effect of approximation, direction T-to-H

Figure 11. Nemex bag-of-words scoring: effect of approximation, direction H-to-T
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Figure 12. Effect of direction of processing: Nemex bag-of-words scoring, Cosine simi-

larity

value, a decrease in threshold leads to a lower accuracy. This pattern is observed because a

distance-based match allows accounting for different forms of the same word, tokenization

errors and spelling variations. However, decreasing it beyond a certain value results in

addition of noise, leading to a drop in accuracy.

Accuracy obtained using Jaccard similarity is different from those of Dice and cosine

similarity metrics. This is because the Jaccard similarity metric penalizes a low overlap

between ‘T’ and ‘H’ more than Dice and cosine similarity measure. Dice and cosine

similarity measures are identical if the vector size for ‘T’ and ‘H’ are the same. If overlap

between the two vectors is low, cosine similarity value is higher than Dice similarity.

Next, Figures 12, 13 and 14 show the change in accuracy on varying the direction of

processing, for Dice, cosine and Jaccard similarity metrics respectively. No clear trend

is observed with this variation. However, the values for each direction of processing is

different, following the same contention as earlier.

Further, evaluations have been performed using the configuration Nemex bag-of-lemmas

scoring, ignoring stop-words in the data-set. Multiple similarity metrics and thresholds

have been used to identify classification accuracy trends and best performance setting.

Corresponding results have been recorded in Table 6 and have been visualized in the line

plots in Figures 15 and 16.

Distance-based alignment follows similar trend in case of a Nemex bag-of-lemmas match

as in Nemex bag-of-words scoring for Cosine and Dice similarity measures. Variations

in accuracy are less steep as compared to the previous case. This is because in case of

Nemex bag-of-words scoring, an approximation allows for alignment of different forms

of the same word also, which are already aligned in case of exact Nemex bag-of-lemmas

38



Figure 13. Effect of direction of processing: Nemex bag-of-words scoring, Dice similarity

Figure 14. Effect of direction of processing: Nemex bag-of-words scoring, Jaccard simi-

larity

Threshold
Dice TtoH

accuracy

Dice HtoT

accuracy

Cosine TtoH

accuracy

Cosine HtoT

accuracy

Jaccard TtoH

accuracy

Jaccard HtoT

accuracy

0.70 58.88 61.38 60.88 61.75 58.50 57.38

0.75 62.00 60.88 61.25 61.13 58.25 55.88

0.80 58.88 58.63 58.88 58.38 57.13 56.25

0.85 57.00 55.25 57.75 55.75 56.00 55.38

0.90 56.50 55.88 57.13 55.88 56.25 54.88

0.95 56.13 54.88 56.63 55.13 56.88 54.63

1.00 56.13 54.75 56.25 55.00 56.13 54.50

Table 6. Effect of distance based match on Nemex bag-of-lemmas scoring after stop-

words removal
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Figure 15. Nemex bag-of-lemmas scoring: effect of approximation, direction T-to-H

Figure 16. Nemex bag-of-lemmas scoring: effect of approximation, direction H-to-T
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Figure 17. Effect of direction of processing: Nemex bag-of-lemmas scoring, Cosine

similarity metric

WordNet

Present

Accuracy

(Dice, 0.75)

Accuracy

(Dice, 0.90)

Accuracy

(Cosine, 0.8)

No 62.00 56.50 58.88

Yes 60.88 54.13 58.00

Table 7. Effect of WordNet entries on Nemex bag-of-lemmas scoring

scoring.

Moreover, Nemex bag-of-lemmas scoring performs less accurate entailment classification

than Nemex bag-of-words scoring. This suggests that loss of semantics in data due to loss

of inflection is high enough to negatively affect system performance.

Following the analysis of the effect of approximation on Nemex bag-of-lemmas scoring,

the effect of change in direction of processing on accuracy has been visualized for the same

configuration. Figures 17, 18 and 19 represent these visualizations for Cosine, Dice and

Jaccard similarity measures respectively. As in the case of Nemex bag-of-words scoring,

no clear trend is observed on changing the direction.

Next, evaluations were performed by enriching the generated NemexA gazetteer for Nemex

bag-of-lemmas scoring with matching entries (synonyms, hypernyms and part-holonyms)

from WordNet. The best performing configuration from the Nemex bag-of-lemmas scor-

ing, and some other randomly chosen configurations were evaluated to analyze this effect.

Obtained results have been recorded in Table 7.

It is observed that additional WordNet entries negatively affect the system performance,

instead of improving classification accuracy. It indicates that out-of-context entries are

perhaps added to the generated gazetteer through a WordNet match, which results in noisy
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Figure 18. Effect of direction of processing: Nemex bag-of-lemmas scoring, Dice simi-

larity metric

Figure 19. Effect of direction of processing: Nemex bag-of-lemmas scoring, Jaccard

similarity metric
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Threshold
Dice

accuracy

Cosine

accuracy

Jaccard

accuracy

Dice accuracy

with coverage

Cosine accuracy

with coverage

Jaccard accuracy

with coverage

0.60 58.38 58.00 56.88 59.00 58.13 55.88

0.65 58.00 58.50 55.63 57.63 57.75 57.38

0.70 56.88 56.38 55.88 57.50 56.75 57.00

0.75 56.25 56.38 56.88 55.88 56.13 56.50

0.80 55.88 56.25 56.75 57.13 56.88 56.38

0.85 57.00 57.75 57.25 56.38 56.38 57.25

0.90 57.75 56.75 58.00 56.75 56.75 56.63

0.95 58.25 57.88 58.00 56.50 56.63 56.75

1.00 57.88 58.38 57.63 56.75 57.13 57.38

Table 8. Identifying the best similarity measure and threshold: Nemex bag-of-chunks

Scoring supplemented with WordNet, direction H-to-T

Figure 20. Identifying the best similarity measure and threshold: Nemex bag-of-chunks

Scoring supplemented with WordNet, direction H-to-T

alignments that reduce classification accuracy, instead of adding meaningful semantic

information.

After analyzing the performance of Nemex bag-of-lemmas scorer, experiments were con-

ducted to identify the best configuration for Nemex bag-of-chunks scorer. Chunk entries

were expanded using matching WordNet entries. Direction of processing was set as “H-

to-T” to limit the number of chunk entries after WordNet expansion. Table 8 lists the

accuracy scores for this configuration under different similarity measures and thresholds.

A visualization of these results in presented in Figures 20 and 21.

It is observed that accuracy is poor for thresholds in the range 0.7-0.8 for all the similarity

measures. Jaccard similarity measure performs poorly as compared to Dice and cosine

similarity measures when similarity threshold is low.

When alignments between phrases are identified, phrases with high lexical dissimilarity,
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Figure 21. Identifying the best similarity measure and threshold: Nemex bag-of-chunks

Scoring supplemented with WordNet, direction H-to-T, with coverage features

but also high semantic similarity should be aligned. For example, an alignment should

be generated between “the cat and the dog” and “the pet”. Unless similarity threshold is

sufficiently low, Nemex bag-of-chunks scorer can not align these instances. It is believed

that threshold range 0.7-0.8 is sufficiently low to add noise, but not to capture such

lexical differences. A lower threshold is required for a more semantic alignment. A higher

threshold generates alignments only among almost exact phrases, thereby resulting into

a better accuracy.

Further, an effect of coverage features has been analyzed in Figures 22, 23 and 24. Cov-

erage features typically reduce classification accuracy when phrases are aligned through

NemexA.

Following the evaluations with Nemex bag-of-chunks scorer, system performance using the

semantic phrase scorer was evaluated. Threshold for cosine similarity between vectors for

phrases was varied to identify the best configuration. Corresponding accuracy obtained

on the RTE-3 data-set is recorded in Table 9. Further, these results have been represented

in Figure 25. An analysis of utility of coverage features has also been performed.

Unlike effect of coverage features in Nemex bag-of-chunks scorer, here it is observed that

better accuracy is obtained on higher thresholds when coverage features are also used to

analyze system performance. However, on lower thresholds, the system performs better

when coverage features are not used. Further, it is also observed that semantic phrase

scoring results in better accuracy than Nemex bag-of-chunks scoring. It suggests that

better alignments are obtained when phrases are semantically aligned using word embed-

dings, rather than through WordNet extension.

Once the best threshold and feature set for semantic phrase scorer has been identified,
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Figure 22. Effect of coverage features on Cosine similarity measure: Nemex bag-of-

chunks Scoring supplemented with WordNet, direction H-to-T

Figure 23. Effect of coverage features on Dice similarity measure: Nemex bag-of-chunks

Scoring supplemented with WordNet, direction H-to-T
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Figure 24. Effect of coverage features on Jaccard similarity measure: Nemex bag-of-

chunks Scoring supplemented with WordNet, direction H-to-T

Threshold
Accuracy

Without Coverage

Accuracy

With Coverage

0.60 59.38 57.75

0.65 59.00 58.50

0.70 58.38 58.38

0.75 57.75 57.13

0.80 56.50 58.38

0.85 56.00 57.88

0.90 54.63 56.13

0.95 55.75 55.88

1.00 55.63 56.63

Table 9. Accuracy using Semantic Phrase Scorer, with and without coverage features,

without negative alignment identification
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Figure 25. Performance trend - Semantic Phrase Scorer, with and without coverage

features, without negative alignment identification

Threshold WN/VO Accuracy
Accuracy

Without WN,VO

0.6 WN 59.63 59.38

0.6 VO 59.50 59.38

0.6 WN, VO 59.75 59.38

0.9 WN 54.63 54.63

0.9 VO 54.63 54.63

0.9 WN, VO 54.63 54.63

Table 10. Effect of negative alignment identification, Semantic Phrase Scoring without

coverage features

an effect of distinction between negative and positive alignment links for entailment has

been evaluated. Various experiments are conducted to identify this effect, and the corre-

sponding results obtained are presented in Table 10.

It is observed that distinguishing between negative and positive alignment links improves

system performance on lower thresholds, however no change is seen on higher thresholds.

Usage of both WordNet (WN) and VerbOcean (VO) for this purpose positively contributes

to system performance.

This behavior is witnessed because when similarity threshold is high, majority of the

generated alignment links are synonymous. However, reduction in threshold results in

addition of links such that context of usage is the same, however inherent meanings are

different. Proposed mechanism for negative links identification manages to capture such

links that are added in the data.
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Threshold
Accuracy

With Negation

Accuracy

Without Negation

0.6 59.63 59.38

Table 11. Effect of negation scoring on semantic phrase scoring

Nemex

BoW

Config

Nemex

BoL

Config

Nemex

BoChunks

Config

Semantic Phrase

Scoring

Config

Negation

Scoring
Accuracy

Cosine

0.8

T-to-H

no stopwords

NA NA NA No 64.88

Cosine

0.8

T-to-H

no stopwords

NA

Cosine

0.65

H-to-T

WN

0.6

coverage features absent

WN

VO

Yes 63.75

Cosine

0.8

T-to-H

no stopwords

NA NA

0.6

coverage features absent

WN

VO

Yes 64.63

Cosine

0.8

T-to-H

no stopwords

NA NA

0.6

coverage - content, verb, proper noun

WN

VO

Yes 63.50

Cosine

0.8

T-to-H

no stopwords

Dice

0.75

T-to-H

WN

NA

0.6

coverage - content, verb, proper noun

WN

VO

Yes 63.25

Table 12. Best configurations on RTE-3 data-set

Lastly, effect of negation scoring on semantic phrase scoring has been evaluated in a

configuration such that similarity threshold is 0.6, and negative alignments are not distin-

guished from positive ones. Corresponding result has been recorded in Table 11. Negation

scoring has been found to improve the system performance. Although an improvement

in accuracy is not very high in terms of absolute numbers, it is significant nonetheless.

Its significance is high due to the fact that in an small data-set, the number of instances

where such a feature is present is low.

Further, in the end, different available scorers have been combined, and their amalgamated

performance is recorded in Table 12. Thereby, the best obtained accuracy is compared

with the existing state-of-the-art in Table 13.

It is observed that the best obtained system performance is good, but not better than

the best performing systems on RTE-3 data. The developed system achieved an accuracy
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System Accuracy

Proposed best 64.63

Textual Inference Engine

(TIE) best
65.20

Multilevel Alignment

Architecture
67.00

Table 13. Comparison of accuracy obtained on RTE-3 data-set with state-of-the-art

of 64.63% when semantic alignments where added along with approximate bag-of-words

scoring. This accuracy is a quarter percent lower than the accuracy obtained with approx-

imate bag-of-words scoring configuration without any semantic information. However, the

best available accuracy of Textual Inference Engine, the system used as a basis for this

thesis, is 65.20%. Similarly, accuracy obtained using the Multilevel alignment architecture

on this data-set is 67.00%. These systems have been described in Sections 1.3.4 and 1.3.3

respectively.

This behavior suggests that alignment and entailment classification techniques besides

the one proposed are better for RTE-3 data. However, it is also believed that the RTE-

3 data-set is very small and is not an effective indicator for performance of statistical

systems. Further evaluations on the RTE-6 and SNLI data-sets has been performed to

assess this hypothesis.

3.2.2 Evaluations - RTE-6 data-set

Pairwise evaluations on the RTE-6 data-set have been performed after converting it to

the format of RTE-3 data-set. A data-set consisting of (T,H) pairs has been generated by

associating each candidate text sentence with its corresponding hypothesis. Generated

training set consists of all the candidate sentences and hypotheses from all the topics in

the original training set. However, a separate test data-set is created for each topic in the

RTE-6 test set, in format of RTE-3 test-set.

During evaluations, separate precision, recall and F-score is recorded for each topic in

the test set. These scores are thereby averaged to generate micro and macro-averaged

precision, recall and F-score.

Given that this data-set contains 95% negative cases, to achieve a balance between pre-

cision and recall of positive cases, misclassification costs are taken into consideration. A

cost matrix is used to learn a cost-sensitive model. Training instances are re-weighted

according to costs specified in the cost matrix before a model is learned.

Further in this section, evaluation result has been discussed. First of all, it is discussed
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Cost ratio

entailment:non-entailment
Precision Recall F-score

1.0 68.1 7.1 12.9

1.5 59.4 12.7 20.9

2.0 53.2 17.6 26.5

2.5 50.1 23.3 31.8

3.0 44.4 28.2 34.5

3.5 40.3 31.3 35.2

4.0 38.6 34.4 36.4

4.5 36.7 38.2 37.5

5.0 35.2 41.1 37.9

5.5 33.7 43.0 37.8

6.0 32.4 46.4 38.1

6.5 30.9 49.1 37.9

7.0 30.1 51.1 38.0

7.5 29.1 53.8 37.8

8.0 28.7 56.4 38.0

8.5 27.9 58.3 37.8

9.0 27.1 59.9 37.3

9.5 26.1 60.5 36.5

10.0 25.4 61.9 36.0

Table 14. Tuning cost ratio, entailment:non-entailment using 10-fold cross-validation on

RTE-6 development set

how a cost matrix is decided upon, and then the obtained F-score is compared with the

state-of-the-art results.

Multiple configuration parameters of the system are assumed to follow the same trend

for this data-set, as in the RTE-3 data-set. The utilized configuration is Nemex bag-

of-words scoring with cosine similarity measure and similarity threshold of 0.8, semantic

phrase scoring with threshold 0.75, using WordNet to find negative links, along with

content word, nouns and proper nouns coverage features, and negation scoring. Different

cost ratios have been considered and the optimal one is chosen based on cross-validation

approach on training data.

Using the previously specified configuration, F-scores obtained for 10-fold cross-validation

on the positive class in the development set is given in Table 14. Figure 26 presents these

results in a graph and indicates the ratio corresponding to the maximum F-scores.

From Table 14, the cost ratio corresponding to maximum F-score, which weighs the
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Figure 26. Tuning cost ratio, entailment:non-entailment using 10-fold cross-validation

on RTE-6 development set

positive instances 6 times the negative ones, is chosen as the standard cost ratio for

evaluating performance further on the test set. Obtained precision, recall and F-score

for each topic in the test set, according to previously chosen best configuration, has been

input in Table 15.

Test Set

Topic ID
Precision Recall F-score

D 0901 26.97 68.91 38.77

D 0902 26.62 44.09 33.20

D 0907 28.09 67.57 39.68

D 0913 25.41 56.10 34.98

D 0918 37.50 60.64 46.34

D 0928 43.81 46.46 45.10

D 0931 34.36 72.90 46.71

D 0936 42.86 57.35 49.06

D 0939 25.00 46.09 32.42

D 0943 41.53 78.63 54.35

Micro-average 32.33 60.32 42.10

Macro-average 33.22 59.87 42.73

Table 15. Precision, recall and F-score for each topic RTE-6 test-set using specified

configuration

A micro-average F-score of 42.10 is obtained on the RTE-6 data-set when parameters are

chosen in such a manner. This score is compared with the state-of-the-art systems in
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System
Micro-average

F-score

Macro-average

F-score

Baseline (best) 34.63 NA

Proposed best 42.10 42.73

LITE 39.81 40.58

RTE-6 challenge

best
48.01 49.58

Table 16. Comparison of accuracy obtained on RTE-6 data-set with state-of-the-art

Table 16.

It is observed that the proposed system is among the top performing systems in the RTE-

6 challenge, although it was not tailored only for this data-set. The system performs

better than LibLinear Textual Entailment Engine (LITE) developed at DFKI, discussed

in Section 1.3.5 earlier. LITE uses Meteor to generate alignment scores between ‘T’

and ‘H’, along with several other features. This indicates that the generated alignments

are comparable to those generated by Meteor, and the newly proposed features perform

better.

3.2.3 Evaluations - SNLI corpus

Lastly, system performance has been evaluated on the SNLI corpus. Two-way entailment

relation classification is performed such that “Neutral” and “contradiction” classes are

both considered to be “non-entailing” (T,H) pairs. The SNLI corpus is converted to

format of the RTE3 data-set, and pairwise processing is thereby done. The pairs in which

inter-annotator agreement could not be reached are not considered for processing. This

leaves a total of 549,367 pairs in the training set, 9842 pairs in the development set and

9824 pairs in the test set.

Among the available (T,H) pairs in the SNLI corpus, a very small subset of pairs could

not be tokenized due to technical challenges. These pairs, numbering 431 in training set,

6 in development set, and 12 in test set, have been disregarded during evaluations.

Evaluations on the SNLI corpus has been performed using the configuration - Nemex

bag-of-words scoring with cosine similarity threshold 0.8, Semantic phrase scoring with

threshold 0.75, identifying negation links through WordNet, and a Negation scoring com-

ponent. Task features have not been used during classification, because this information

is not associated with the data-set. Performance with and without coverage features,

both, have been recorded. A slightly improved performance was obtained when none of

the coverage scores were used while learning the model.
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System
Accuracy

(2-way)

Proposed

(without coverage scores)
75.27

Proposed

(With coverage scores:

content word,

verb,

proper nouns)

75.14

Edit-distance

(FBK)
71.90

TIE

without lexical resources
72.20

TIE

with lexical resources
75.00

Table 17. System performance on two-way classifications on SNLI corpus, and compar-

ison with state-of-the-art

Rows 3 to 5 of table 17 indicate performance of the algorithms within the EOP on the SNLI

corpus for a two-way task. Edit-distance based entailment engine has been developed at

“Fondazione Bruno Kessler”, Italy and uses edit distance operations to decide about

entailment. Further, TIE is the system developed at DFKI, discussed in Section 1.3.4.

The proposed system has comparable performance with the existing systems in the EOP

on the SNLI corpus.
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4 Conclusions and Discussion

In this section, the results obtained on the three data-sets will be compared, and con-

clusions will be discussed. Further, suggestions for extending and improving the system

in future will be put forward. Lastly, a critical analysis of the available data-sets and

evaluation metrics will be performed.

4.1 Summary and Conclusions

The results obtained in Section 3.1.1 reflect that entailment accuracy improves with an

approximate match, as opposed to an exact match. However, when similarity threshold

is reduced below a certain value, the accuracy starts decreasing again due to addition of

too much noise.

Moreover, it is observed that entailment accuracy in the Nemex bag-of-lemmas configura-

tion follows a similar trend as Nemex bag-of-words configuration. However, this trend is

less steep than the previous one. This configuration performs poorly as compared to Ne-

mex bag-of-words configuration. Semantic alignments through WordNet add more noise

to the data, than meaningful information.

Furthermore, phrase alignments generated through word embedding result in better sys-

tem performance than phrase alignments generated using NemexA. Identification of nega-

tive alignments through WordNet and VerbOcean while using word embeddings improves

performance of the system.

Similarly, accounting for negation terms also positively contributes to entailment classifi-

cation accuracy.

As we see in Sections 3.2.2 and 3.2.3, accuracy and performance of algorithms improve

with an increase in the size of the data-sets. This behavior is in accordance with the

behavior expected from statistical systems. Larger number of instances allow learning

more generalized models, in our case, for entailment decision classification.

While the small size of the RTE3 data-set is a limiting factor for performance of systems

applying machine learning algorithms, larger data-sets like the RTE-6 data-set and the

SNLI corpus allow for efficient and more accurate classification using these algorithms.

Comparable results have been obtained by the proposed system on these larger data-sets.
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4.2 Suggested Improvements

The SNLI corpus was released towards the end of implementation phase of the thesis

research. Hence, sufficient time was not available to perform multiple evaluations using

this corpus. We believe that an improvement in classification accuracy would be obtained

on tuning parameters directly on this corpus, instead of re-using the tuned parameter

values for the best available configuration according to the RTE-3 data-set. Therefore,

further experimentation with this corpus, which is the new standard for evaluating RTE

algorithms, should be performed. Furthermore, 3-way classification should be explored to

compare the system performance with the best results on the SNLI corpus.

The proposed system performs lexical and semantic alignments between phrases of text.

It adds multiple alignment links between phrases based on exact or approximate text

similarity, word stem similarity, semantic similarity through the use of knowledge bases

WordNet and VerbOcean, or content level semantic similarity through embedded vectors

for phrases. Before computing most of these similarities, phrases have been obtained

through the use of a ‘chunker’. This ‘chunker’ identifies phrases in text - noun phrase, verb

phrase, or prepositional phrase using a pre-trained maximum entropy classifier. Hence,

performance of the applied ‘chunker’ becomes a bottleneck for system performance. In

order to overcome this bottleneck, phrases need to be automatically identified instead.

Moreover, while performing semantic alignment between phrases using word embeddings,

vectors for phrases have been generated by combining vectors for constituent words using

‘addition’ operator. These word vectors have been trained using Word2Vec on the Google

News corpus. Although this generates reasonable alignments, the introduction of the

SNLI corpus allows for training phrase vectors. The next steps would include learning

these vectors from the corpus directly.

Furthermore, the proposed approach adds several lexical and semantic phrase alignment

links to analyze whether an entailment relation holds. These semantic links allow aligning

phrases that have similar meaning. However, in order to identify whether the meaning of

hypothesis is covered by meaning of corresponding text, these links can be enriched with

semantic roles. A high correspondence between semantic roles in text and hypothesis

would support an entailment judgement, as compared to the opposite.

Finally, negation scores calculated in the developed system do not take into account the

scope of negation words. For the negation feature to be more effective, these scopes should

be accounted for. Instead of calculating negation scores dependent on the occurrence of

negation words in text and hypothesis, relative to their sizes, only those negation words

should be considered, which modify some aligned phrase.

In addition to these suggested improvements for a more efficient alignment and feature

value generation, discourse resolution should be performed on (T,H) pairs in the RTE-6
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data-set. Difference between the developed system for the RTE-3 and the RTE-6 data-set

lies in the classifier being used. The same processing is done for the two to calculate

feature scores, although the data-sets are very different to each other. Due to the corpus-

oriented approach followed by the RTE-6 data-set, several references to such information

is present, which is outside the scope of the sentence pair in question. Efficient processing

of such references requires discourse resolution prior to generating alignments between

phrases of text and hypothesis.

Such enhancements are expected to improve system performance, thereby generating ef-

ficient entailment classification models.

4.3 Criticism

Following the conclusions in Section 4.1, it is discernible that the RTE-3 data-set is

too small for efficient learning of statistical models. Increase in classification accuracy

obtained on moving from the RTE-3 data-set to the SNLI corpus establishes the SNLI

corpus as the new standard. However, it does not include (T,H) pairs where text may

range up to a paragraph in length, compared to single sentence hypothesis. An ideal

corpus for an entailment classification task would be a very large corpus which indicates

a more natural entailment distribution, as opposed to artificially constructed cases for

entailment.

Furthermore, the Excitement Open Platform (EOP) has been developed with a perspec-

tive for pair-wise processing. All the (T,H) pairs in the data-set are annotated as an

independent data point. However, data-sets like the RTE-6 data-set follow a corpus-

oriented approach, where each (T,H) pair is not independent of other sentences in the

corpus. Pair-wise perspective highly inefficient for such a data-set. Instead of recon-

structing the RTE-6 data-set in the format of the RTE-3 data-set by enlisting all possible

pairs of hypotheses and corresponding candidate sentences, a tool which directly identifies

entailing sentences from a corpus given a hypothesis is more practical. It can be directly

applied to several tasks like question answering. Hence, abstracting away from obligatory

pair-wise processing in the EOP would be recommended for a more pragmatic approach.

The RTE-6 data-set reflects natural distribution of entailment relations in a corpus. It

is comparatively larger than the RTE-3 data-set. However, evaluations on this data-set

processes each topic independently, and thereby results on these topics are averaged. Each

topic consists of a much smaller number of (T,H) pairs, where about 95% of cases are

negative. In order to handle this imbalance, a cost matrix has been used. However, if

topics were not processed independently, the data-set would be large enough to apply

more advanced techniques to handle this imbalance, like ensemble learning.
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