Model Agnostic Interpretability Techniques

Madhumita Sushil

Model Interpretability - What and why?

Understanding trained ML models and outputs for

- Error analysis
- Exploratory analysis

Interpretability vs. Accuracy

Accuracy

https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9

CLiPS LAB MEETING - 6th March 2018

Interpretability vs. Accuracy

Accuracy

https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9

CLiPS LAB MEETING - 6th March 2018

Making Neural Nets Interpretable

Feature Deletion

Evaluating output change after masking a feature

Feature Deletion

Evaluating output change after masking a feature

Drawbacks:

- Model may learn completely different patterns
- Feature co-occurrence effects not modeled

Sensitivity Analysis

Gradient (absolute/squared) of output with respect to input

Sensitivity Analysis

Gradient (absolute/squared) of output with respect to input

Drawback: Accounts for variations in input instead of the actual input

Sensitivity Analysis

Gradient (absolute/squared) of output with respect to input

Drawback: Accounts for variations in input instead of the actual input **Solution:** Gradient*input (saliency)

Layer-wise relevance propagation

Backpropagate output scores to input

- Deep Taylor decomposition
- Change in output w.r.t reference input

Layer-wise relevance propagation

Backpropagate output scores to input

- Deep Taylor decomposition
- Change in output w.r.t reference input (DeepLIFT)

Drawback: Calculation dependent on reference input value: 0, or user-selected.

Information Theory

Maximize mutual information between feature subset and output

Drawback: Feature subset size predetermined.

Solution: Tune the subset size

Explanation Model

Learning separate local explanation model

Linear model fit on feature subset to predict original model output

- LIME
- SHAP: combines the properties of LIME, relevance propagation and shapely value estimation

Explanation Model

Learning separate local explanation model

Linear model fit on feature subset to predict original model output

- LIME
- SHAP: combines the properties of LIME, relevance propagation and shapely value estimation

Drawbacks:

- Very expensive
- Does not estimate feature importance from the original model

Comparative performance

Sensitivity analysis and relevance propagation have comparative results

Information theoretic approach seems to work well

SHAP has better scores than LIME

Thank You!

CLiPS LAB MEETING - 6th March 2018