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Patient Representations 
Task-independent generalized semantic representations of patients, s.t.

                                Similar patients - similar representations

Patient similarity encompasses holistic patient condition
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Patient Similarity
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Pipeline - Representation Learning and Evaluation
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Data
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icons by pictohaven, LAFS, ProSymbols, Lucas Almeida, 
Juraj Sedlák;  thenounproject.com

MIMIC-III adult 
patient; min. 1 
non-discharge 
note

25k-3k-3k
(train-val-test)

1-879 notes, 
14 categories

PATIENT 
DOCUMENT

PATIENT
TOKENS

Avg. 13k tokens

UCTO

https://thenounproject.com/pictohaven
https://thenounproject.com/LAFS
https://thenounproject.com/prosymbols
https://thenounproject.com/perdidao
https://thenounproject.com/yumminky
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Unsupervised Representation Learning
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Unsupervised Representation Learning
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Unsupervised Representation Learning
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Supervised Representation Evaluation
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Results - Representation Evaluation
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All generalized 
representation models 
significantly outperform 
sparse models when no. of 
positive instances is low 
(30 days mortality).
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Results - Representation Evaluation
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For all tasks except distant 
patient mortality, BoW 
model is a strong baseline 
(strong lexical features 
present).
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Results - Representation Evaluation
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Recommended to combine 
SDAE and doc2vec 
vectors 
for unknown tasks.
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Model Interpretability
Critical for

● Error analysis
● Exploratory analysis

Goal: Quantitative explanation of a trained model without retraining
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Feature Extraction - Pretraining Autoencoders
Rank features according to mean 
squared feature reconstruction error 
across all instances
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Feature Extraction - Pretraining Autoencoders
Rank features according to mean 
squared feature reconstruction error 
across all instances

0.87-0.88 Spearman correlation 
coefficient between feature 
reconstruction error and frequency

Feature entropy too high?
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Finding Influential features - Classification Phase
Gradient-based feature sensitivity calculation across two neural networks

For arbitrary number of instances and output classes

Transferable to different representation learning architectures
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Feature Extraction - Classification Phase
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Feature Extraction - Classification Phase

Feature influence = Maximum root mean squared sensitivity across all instances
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Most influential features for one instance each
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Conclusions
Generalized patient representations help for low number of positive instances 

Recommended to combine autoencoder and doc2vec representations 

During representation learning, autoencoder has high reconstruction error for 
frequent terms, perhaps due to their high entropy

The most influential features for classification however are frequent terms, and 
context of features plays a role. 
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THANK YOU!
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Results
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