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Patient Representations

Task-independent generalized semantic representations of patients, s.t.
Similar patients - similar representations

Patient similarity encompasses holistic patient condition
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Patient Similarity

Patient cohort Treatment
identification recommendation

Patient similarity

Patient prognosis Risk factor identification
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UCTO

B PATIENT p{ PATIENT
DOCUMENT TOKENS

MIMIC-III adult
patient; min. 1
non-discharge
note

Avg. 13k tokens

25k-3k-3k

(train-val-test)
1-879 notes,
14 categories

icons by pictohaven, LAFS, ProSymbols, Lucas Almeida,
Juraj Sedlak; thenounproject.com
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https://thenounproject.com/pictohaven
https://thenounproject.com/LAFS
https://thenounproject.com/prosymbols
https://thenounproject.com/perdidao
https://thenounproject.com/yumminky

Unsupervised Representation Learning
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Unsupervised Representation Learning
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Unsupervised Representation Learning

DOC2VEC

DAE-BoW
Vectors S °

Vectors

SDAE-BoW
e

DOC2VEC
Vectors

CLIN28 8



Supervised Representation Evaluation

Patient Representations
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Results - Representation Kvaluation

Approach |In_hosp (30_days | 1_year | Pri_diag_cat| Pri_proc_cat Gender AH generahzed
(AUC) (AUC) (AUC) | (F-score-wt) | (F-score-wt) | (F-score-wt) representation models

9457 5949  79.42 70.16 73.66 98.47 significantly outperform
SDAE-BoW 91.94] 7965  79.80 65.00 67.46 87.75

sparse models when no. of
Doc2vec 91.95] 76.80 81.34 68.07 65.83 97.70 o )
SDAE-BoW + 93.83] 81.13 83.02 67.88 70.30 9747 PoOsitive instances is low
Doc2vec \ y (30 days mortahty).

CLIN28 10




Results - Representation Kvaluation

Approach |In_hosp | 30_days Pri_diag_cat | Pri_proc_cat Gender
(F-score-wt) | (F-score-wt) | (F-score-wt)
BoW 94.57 59.49 79.42 70.16 73.66 98.47
SDAE-BoW 91.94 79.65 79.80 65.00 67.46 87.75
Doc2vec 91.95 76.80 81.34 68.07 65.83 97.70
SDAE-BoW + 93.83 81.13 83.02 67.88 70.30 97.47
Doc2vec

CLIN28

For all tasks except distant
patient mortality, BoW
model is a strong baseline
(strong lexical features
present).




Results - Representation Kvaluation

Approach 30_days Pri_diag_cat| Pri_proc_cat Gender
(AUC) (F-score-wt) | (F-score-wt) | (F-score-wt)

9457 5949  79.42 70.16 73.66 9847 Recommended to combine
SDAE-BoW 91.94  79.65  79.80 65.00 67.46 8775  SDAE and doc2vec
Doc2vec 91.95 76.80 81.34 68.07 65.83 8770 vectors
SDAE-BoW +  93.83 8113  83.02 67.88 70.30 97.47
i for unknown tasks.
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Model Interpretability

Critical for

e [rror analysis
e [Hxploratory analysis

Goal: Quantitative explanation of a trained model without retraining
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Feature Kxtraction - Pretraining Autoencoders

Rank features according to mean
squared feature reconstruction error
across all instances
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Feature Kxtraction - Pretraining Autoencoders

Rank features according to mean

squared feature reconstruction error ERenne picc

across all instances jajhnx woman
a-fibril osh
Isc.o fall
potentiallly man
yesh stent
forcal he
contbributing wife
hyponatremia-on repair
pre-exiusting bleed
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Feature Kxtraction - Pretraining Autoencoders

Rank features according to mean

squared feature reconstruction error stumnz picc

across all instances jajhnx woman
a-fibril osh
Isc.o fall
potentiallly man

0.87-0.88 Spearman correlation

.. esh stent
coefficient between feature I
. forcal he
reconstruction error and frequency
contbributing wife
Feature entropy too high? hyponatremia-on repair
pre-exiusting bleed
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Finding Influential features - Classification Phase

Gradient-based feature sensitivity caleulation across two neural networks
For arbitrary number of instances and output classes

Transferable to different representation learning architectures
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Feature Extraction - Classification Phase
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Feature Extraction - Classification Phase
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Feature Extraction - Classification Phase
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Feature influence = Maximum root mean squared sensitivity across all instances

CLIN28 16




Most influential features for one instance each

_In_hosp | _30_days | 1 year | Pri_diag cat|Pri_proc_cat Gender

vasopressin leaflet magnevist numeric_val numeric_val woman
pressors structurally signal previous no female
focused pacemaker decisions rhythm of she
dnr sda periventricular no enzymes man
dopamine periventricular embolus flexure extubated he
acidosis excursion underestimated  dementia rhythm male
levophed non-coronary calcified brbpr and her
pressor dosages screws of the his
cvvhd microvascular rib sinus vent wife
cvvh left-sided shadowing for uncal uterus
emergency chronic gadolinium to mso him
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Conclusions

Generalized patient representations help for low number of positive instances
Recommended to combine autoencoder and doc2vec representations

During representation learning, autoencoder has high reconstruction error for
frequent terms, perhaps due to their high entropy

The most influential features for classification however are frequent terms, and
context of features plays a role.
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Results

Approach |In_hosp |30 _days| 1 _year | Pri_diag_cat| Pri_proc_cat Gender
(AUC) (AUC) (AUC) | (F-score-wt) | (F-score-wt) | (F-score-wt)

94.57 59.49 79.42 70.16 73.66 98.47
SDAE-BoW 91.94 79.65 79.80 65.00 67.46 87.75
Doc2vec 91.95 76.80 81.34 68.07 65.83 97.70
SDAE-BoW + 93.83 81.13 83.02 67.88 70.30 97.47
Doc2vec
BoCUI 90.88 50.65 69.93 71.04 72.65 75.04
SDAE-BoCUI 90.07 78.32 80.16 66.47 67.77 62.45
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