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"Machine Learning has become alchemy."

- Ali Rahimi, NeurlPS 2017



"We're building systems that govern healthcare. |
would like to live in a society whose systems are
built on top of verifiable, rigorous, thorough
knowledge and not on alchemy."

- Ali Rahimi, NeurlPS 2017






Why understand models?

Safety Gaining
new
insights
Error
analysis
Toremove Accountability
biases
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Safety

HasAsthma(x) = LowerRisk(x) for pneumonia

Caruana, Rich, et al. "Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission."
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
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Safety

HasAsthma(x) = LowerRisk(x) for pneumonia

High risk assessment
by doctors

Aggressive treatment

Caruana, Rich, et al. "Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission."
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
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Error analysis and improving models

IBM Watson recommended a 65 year old
patient with severe bleeding a drug that
could lead to severe or fatal haemorrhage

https://www.siliconrepublic.com/machines/ibm-watson-cancer-treatment
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Error analysis and improving models

IBM Watson recommended a 65 year old
patient with severe bleeding a drug that
could lead to severe or fatal haemorrhage

Could this be avoided by understanding
the model better?

https://www.siliconrepublic.com/machines/ibm-watson-cancer-treatment
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https://www.siliconrepublic.com/machines/ibm-watson-cancer-treatment

Removing biases

"Al systems are only as good as the data we put into them." - IBM

Implicit e Racial bias limits model transferability
data bias Socioeconomic treatment bias results in inaccurate models

e Missing data about healthy patients causes risk overestimation

Mlssm_g Missing information about other hospital visits causes inaccurate
data bias . O,

predictions
Small

sample bias Overfitting underrepresented subgroups of patients

Gianfrancesco, Milena A., et al. "Potential biases in machine learning algorithms using electronic health record data."
JAMA internal medicine 178.11 (2018): 1544-1547.

ACCUMULATE INDUSTRY MEETING - 22nd MARCH 2019



Accountability

GG GDPR

The data subject shall have right to obtain from the controller
the confirmation as to whether or not personal data concerning
him or her are being processed, and, where that is the case, the
following information:

e [ The existence of automated decision making, and at least
in those cases, meaningful information about the logic
involved, as well as the significance and the envisaged

._consequences of such processing for the data subject. | ,,

1. https://gdpr-info.eu/art-15-gdpr/
2. Opening Quotation Mark by Oliver Kittler from the Noun Project
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Gaining new insights

Previous Hypothesis Perform Analyze Results
Research Generation Experiments Draw Conclusion

Data-Driven
Machine learning

Vu, Mai-Anh T., et al. "A shared vision for machine learning in neuroscience." Journal of Neuroscience 38.7 (2018): 1601-1607.
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Defining
Interpretability



Interpretability of Al systems

Interpretability is the degree to which a human can
understand the cause of a decision.

Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences.” arXiv Preprint arXiv:1706.07269. (2017).
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Interpreting Machine Learning

Providing explanations to humans to facilitate them
to understand the cause of a model's decision
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What is an explanation?

Anything that the target audience can understand

1. ML people: Maths is all we need!
2. Domain experts: It could use our jargon and domain knowledge
3. Layman: Plain old English?
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What do we explain?

Single output Complete trained
decisions models
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Established practices
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Interpretability vs. Accuracy

L

@ Linear Regression
@ Decision Tree

Interpretability @ K-Nearest Neighbors
@ Random Forest

@ Support Vector Machines

@ Neural Nets

.
>

Accuracy

https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9
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Interpretability vs. Accuracy

@ Linear Regression Neural Nets
@ Decision Tree
A
Interpretability @ K-Nearest Neighbors

@ Random Forest

@ Support Vectcr Machines

@ Neural Nets

.
>

Accuracy

https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9
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Opening the
black box



If-then-else rules as explanations

Hierarchical list of if-then-else rules:
if <condition1> and <condition2> and ... = class1
elif <condition3> ... = class1

else class2

Quantifies associations between features and classes
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If-then-else rules to interpret neural nets

Input features:
bag of entities,
TF-IDF

Predicted
output class o,
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If-then-else rules to interpret neural nets

1. Feature saliency, G = %
Input features: \
bag of entities, Predicted
TF-IDF output class o,
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If-then-else rules to interpret neural nets

—

1. Feature saliency, (7 — or,

01
Input features:

bag of entities,
TF-IDF

Predicted
output class o,

2. Feature value * saliency
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If-then-else rules to interpret neural nets
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Input features:

bag of entities, @ predicted

TF-IDF ® output class o,

1. Feature saliency, G =

2. Feature value * saliency

v

3. Top k features
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s Absent feature

ACCUMULATE INDUSTRY MEETING - 22nd MARCH 2019




If-then-else rules to interpret neural nets

yd 1. Feature saliency, G — 2%

( Input features:
\ bag of entities,

\\ TF-IDF
N =

2. Feature value * saliency

3. Top k features

l_l—l
8880000

output class o,

Jf t High value, high output probability 5. If-then-else rules
4. Feature value to output correlations 'r Loveyalue; high:output protiabilty ’e',g.’j,},e“',"ja"’fsf;l UmE
Q Absent feature

Madhumita Sushil, Simon Suster, Walter Daelemans. Rule induction for global explanation of trained models.
Workshop on Analyzing and interpreting neural networks for NLP (BlackboxNLP), EMNLP 2018
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Resulting explanations

T Take blood pressure (treatment) and

@ Nothing by mouth and
@ Flagyl

—Diseases of the circulatory system (v 84/90)
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Resulting explanations

T Pneumonia and
T Lung opacity and
| Non-specific ST-T changes by ECG and
@ cTof pelvis w/o contrast

—Diseases of the respiratory system (v/7/7)
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Resulting explanations

T Physical examination and

T Pregnancy with medical condition

—Dies within hospital (v 221/222)
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Open gquestions

When is an explanation better than another?

e If it matches domain knowledge
e |Ifitis plausible according to existing knowledge
e |If it provides new counter-intuitive insights
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Open gquestions

Which explanation form is ideal?
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Question by Elves Sousa from the Noun Project



