Rule induction for global explanation of neural classifiers

Madhumita Sushil, Simon Šuster, Walter Daelemans
Computational Linguistics and Psycholinguistics Research Center, University of Antwerp, Belgium
madhumita.sushil@uantwerpen.be

EXISTING APPROACHES

Word-level importance scores
No information about Interaction between multiple important words and corresponding class labels.

Explanation rules over original inputs
Don't encode knowledge about neural network parameters, and hence could learn completely different patterns despite the same outputs.

RESEARCH QUESTION

How can we induce rules that use neural network parameters to explain its decisions?

PROPOSED TECHNIQUE TO EXPLAIN RNNs

1. Input saliency, $G = \frac{\partial \alpha_k}{\partial I}$
2. Compute word importance = dot(I, G)
3. Compute skipgram importance = mean(word_imp)
4. Retain the most important skipgrams
 - no signs of infection found.
 - document1, class non-septic
 - infection is positive, found evidence.
 - document2, class septic
5. Discretize skipgram importance
 - High positive impact on output probability
 - Low positive impact on output probability
 - High negative impact on output probability
 - Low negative impact on output probability
 - Absent in the input sequence
6. Rules as explanations
 - if no of infection is ++ and found is - then septic
 - else: non-septic

SYNTHETIC DATASET FOR EVALUATION

Sentences sampled from MIMIC-III clinical corpus
- Containing an *infection_term*
- Containing a *measurement_term*
- Containing neither of the terms

Documents populated with 17 sentences each.
Gold labeling rule (using domain knowledge):
- If *infection_term* is not negated and min two *measurement_terms* are not negated:
 - Class septic 49%
 - Class non-septic otherwise

RESULTS - EXPLANATION ACCURACY %

<table>
<thead>
<tr>
<th>Classification</th>
<th>LSTM 100d, Emb 100d</th>
<th>LSTM 100d, Emb 50d</th>
<th>LSTM 50d, Emb 100d</th>
<th>LSTM 50d, Emb 50d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline explanations*</td>
<td>76.10</td>
<td>78.17</td>
<td>83.89</td>
<td>84.96</td>
</tr>
<tr>
<td>Proposed method explanations</td>
<td>98.90</td>
<td>99.46</td>
<td>99.97</td>
<td>98.26</td>
</tr>
</tbody>
</table>

*Rules trained directly from the original input

RESULTS - EXAMPLE EXPLANATION RULES

- **hyperglycemia** = ++
- **evidence infection** = ⚫
- **no infection** = ⚫
- **negative infection** = ⚫
- **fungal infection other** = ⚫
- **altered** = ++

→ septic (✓ 17466/17466)

- **tachypnea** = ⚫
- **meningitis** = ⚫
- **urinary tract** = ⚫
- **endocarditis** = ⚫
- **hyperglycemia** = ⚫

→ non-septic (✓ 16015/16015)